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Objectives 
•  To develop a synergistic framework for fixed and mobile sensors to collaborate on scene understanding  
•  To perform a tight integration of perception and action and to advance cyber-physical systems by exploring a class of 

synergies across: control, video understanding, and data management under uncertainty 
•  To experimentally validate the framework for surveillance domain, using a testbed with autonomous agents 

Exploration with  
Localization Guarantees 

 
Recognizing People in  

non-overlapping  
Camera Network 

  

•  Key results: 
•  General info gathering 

framework 
•  Maximizing 

information goals 
•  Probabilistic 

guarantees 
•  Asymptotic guarantees as 

the # of samples 
increases 

•  Bound on the reward for 
partially known 
environments 

•  Speeds computation 
(>1000x) to real time 

•  Validation by simulation/
experiment 

Queries Over Uncertain  
Trajectories & Uncertainty  

in Stream Data Management 

Network Consistent Re-Identification 
•  Can re-identification results 

be made consistent in a 
network?  

- Maximize global similarity    
across cameras with 
suitable consistency 
constraints. 

•  Will re-identification 
performance be improved by 
enforcing consistency? 

- Solve the problem using 
Binary Integer Programing  
(IEEE TPAMI, 2016) 

Sparse Representation for  
Re-Identification 

Distributed Estimation  
&  Network Consistent  

Re-identification 

Distributed Estimation 
•  The goal is to track targets 

in a distributed manner, 
using all the measurements. 

•  Distributed estimation 
schemes rely on exchanging 
information with neighbors. 

•  Neighboring cameras may 
not have same observations  

•  Proposed optimal estimation 
and data association 
scheme that can handle the 
case of limited observability. 

        (IEEE TPAMI, 2016) 
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(a) No Obstacle Map

(b) One Obstacle Map

(c) Three Obstacle Map

Fig. 6: The expected information gain as a function of increasing
� for three environments and three initial conditions. For values
� < .02, the Rtail(⇧) is guaranteed to be optimal. In all cases, any
returned path satisfies a probability of .9 of re-localization. Sharp
increases in expected information gain correspond to a change in
edge weights near the ICs.

(a) � = 0.1

(b) � = 0.5

Fig. 7: Two RH-PIE paths for two values of �. The robot is
attempting to traverse the cyan path starting in the top right hand
corner, to the bottom left LRA (green polygon). The true robot
position is shown as a translucent cyan, while EKF estimate is
translucent dark green. A white cell implies nothing of interest
exists, while black indicates a near certainty of an area of interest.
The localization landmarks are denoted as black circles.

Fig. 8: The predicted success rate for goal achievement as compared
to simulated Monte Carlo realizations.

negative edge weights throughout the entire graph, which in

turn enables shortest path algorithms to return an optimal

path. Once � is found, Dijkstra’s shortest path algorithm can

be applied to find X
T1:T . The Receding Horizon Probabilistic

Information Explorer (RH-PIE) can be fully described in

Alg.(2).
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Algorithm 2: RH-PIE

In effect the RH-PIE algorithm is very similar in structure

the the full G-PIE algorithm, with the difference being that

instead of computing the reward for each possible path from

start to goal, a R
rh

is calculated for the set of local paths

within the user defined horizon: T
1

2 {1, 2, 3, ...}

V. SIMULATION AND EXPERIMENTAL RESULTS

In order to fully understand both the theoretical and

practical behavior of the G-PIE and RH-PIE algorithms, two

sets of results are presented. The first set of results seeks

to understand the behavior of the full G-PIE algorithm as

well as verify its claims and the practicality of its theoretical

assumptions. The second set of results implement the RH-

Fig. 3: Shown on the left is the Segway RMP50 robotic platform. It
has GPS, odometry, LIDAR (LMS511), IMU, and camera sensing
capabilities. The right image shows the experimental obstacles and
VICON positioning system used to provide ground truth.

PIE algorithm on a Segway RMP50XL platform and seeks to

analyze the practicality of the RH-PIE algorithm in a realistic

scenario.

A. Models Sensors and Experimental Setup

In both the simulation and experimental results, the robot

is modeled as a unicycle with direct velocity/turn-rate control

(v,!) [19]. In order to match the modeling assumptions

made between the simulations and experiments, a discrete-

time, first order, linear, input-output dynamics model was fit

to data from the Segway RMP50XL robotic platform. This

model assumes decoupled SISO control over acceleration

affecting v and !. A kinematic state feedback controller is

used for trajectory generation and tracking [20]. This model

is also used to inform the predictive step in the RH-PIE

algorithm as well as in an EKF filter, which provides pose

estimation.

Location measurements are noisy relative range and bear-

ing to known landmarks (implicitly generating LPAs). Areas

of interest are represented as a grid, and noisy binary

measurements (interesting, uninteresting) are taken at 10Hz.

In these scenarios, the edges of objects are taken to be inter-

esting, so measurements are returns from a SICK LMS511

the G-PIE formulation: 1) fast exploration; 2) asymptotically

optimal exploration; 3) a probabilistic guarantee of localiza-

tion. Finally, a receding time horizon implementation of the

G-PIE is developed which allows near-real time planning.

The behavior of the receding horizon G-PIE is analyzed via

fully autonomous hardware-in-the-loop experiments using

a Segway RMP50XL research platform in Cornell’s Au-

tonomous Systems Laboratory.

II. GENERAL FRAMEWORK FOR INTEGRATED

EXPLORATION WITH CHANCE CONSTRAINTS

A general framework for robotic path planning with in-

formation collection goals and probabilistic constraints is

formulated with two major components: a reward function

which facilitates information collection, and chance con-

straints which provide probabilistic guarantees on a problem-

dependent goal.

Defining X
t

as the robot pose at time t, and a path starting

at time t and terminating at time T as X
t:T

, the optimal path,

X⇤
t:T

, maximizes a reward function, R(X
t:T

),

X⇤
t:T

= argmax
X

t:T
R(X

t:T

) (1)

Importantly, this formulation requires a path to terminate

at an unknown but finite time T , which implies that paths

must be of arbitrary but finite length. This encompasses

all practical robotic paths. Please note that, X
t:T

, is really

a path distribution. In this work the terms path and path

distribution are used interchangeably when there is no chance

for confusion.

Information collection tasks, such as exploration, can

often be encoded as a function of Random Variables (RVs).

Thus, quickly gathering information about these variables

and reducing their uncertainty constitutes fast exploration.

Several well known metrics which capture uncertainty of RVs

are Fisher Information (FI), Kullback-Leibler Divergence

(KLD), and Differential Entropy (DE). When considering an

N dimensional joint distribution, FI can be computationally

expensive (O(N3

)) and require large amounts of storage

(O(N2

)). KLD, which is useful for tracking iterative changes

in RVs, measures the difference between two distributions.

This is not sufficient to ensure information gain, however,

because, although two distributions might differ drastically

before and after an observation, their overall uncertainty may

be similar (e.g covariance). In contrast to KLD, entropy

provides an intuitive information-theoretic metric. A random

variable has high entropy when it is very uncertain, and the

entropy of a RV monotonically decreases as one becomes

more certain about that variable. For these reasons, entropy

is used as the information metric in this work.

Denoting RVs by capital variables and their realizations

as lowercase, the DE of a RV, Y , is defined as:

H(Y ) = �
Z

y2Y

p(y) log(p(y))dy (2)

where Y is the range of all possible values of Y . In IE, Y

can be considered as the vector of RVs of interest, such as

uncertain target positions or unmapped obstacle locations.

As one becomes more certain of the true value of Y , the

DE H(Y ) ! �1 in the continuous case and 0 if Y is

discrete. In a Bayesian context, an information theoretic

reward function can be defined using entropy as:

R(X
t:T

) = H(Y
l(t)

)� E
Z

t:T

⇥
H(Y

n(T )

)

⇤
(3)

This the above equation is sometimes called mutual in-

formation. Here, Z
t:T

=

�
z
l(t)

, ..., z
n(T )

 
is the set of
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the G-PIE formulation: 1) fast exploration; 2) asymptotically

optimal exploration; 3) a probabilistic guarantee of localiza-

tion. Finally, a receding time horizon implementation of the

G-PIE is developed which allows near-real time planning.

The behavior of the receding horizon G-PIE is analyzed via

fully autonomous hardware-in-the-loop experiments using

a Segway RMP50XL research platform in Cornell’s Au-

tonomous Systems Laboratory.
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EXPLORATION WITH CHANCE CONSTRAINTS

A general framework for robotic path planning with in-

formation collection goals and probabilistic constraints is

formulated with two major components: a reward function

which facilitates information collection, and chance con-

straints which provide probabilistic guarantees on a problem-

dependent goal.

Defining X
t
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t:T
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Importantly, this formulation requires a path to terminate

at an unknown but finite time T , which implies that paths

must be of arbitrary but finite length. This encompasses

all practical robotic paths. Please note that, X
t:T

, is really

a path distribution. In this work the terms path and path

distribution are used interchangeably when there is no chance

for confusion.

Information collection tasks, such as exploration, can

often be encoded as a function of Random Variables (RVs).

Thus, quickly gathering information about these variables

and reducing their uncertainty constitutes fast exploration.

Several well known metrics which capture uncertainty of RVs

are Fisher Information (FI), Kullback-Leibler Divergence

(KLD), and Differential Entropy (DE). When considering an

N dimensional joint distribution, FI can be computationally

expensive (O(N3

)) and require large amounts of storage

(O(N2

)). KLD, which is useful for tracking iterative changes

in RVs, measures the difference between two distributions.

This is not sufficient to ensure information gain, however,

because, although two distributions might differ drastically

before and after an observation, their overall uncertainty may

be similar (e.g covariance). In contrast to KLD, entropy

provides an intuitive information-theoretic metric. A random

variable has high entropy when it is very uncertain, and the

entropy of a RV monotonically decreases as one becomes

more certain about that variable. For these reasons, entropy

is used as the information metric in this work.

Denoting RVs by capital variables and their realizations

as lowercase, the DE of a RV, Y , is defined as:

H(Y ) = �
Z

y2Y

p(y) log(p(y))dy (2)

where Y is the range of all possible values of Y . In IE, Y

can be considered as the vector of RVs of interest, such as

uncertain target positions or unmapped obstacle locations.

As one becomes more certain of the true value of Y , the

DE H(Y ) ! �1 in the continuous case and 0 if Y is

discrete. In a Bayesian context, an information theoretic

reward function can be defined using entropy as:
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measurements taken of Y from time t until some terminal

time T after which no further measurements are taken (i.e.

path completion time). The dependence of Y
l(t)

on Z
0:t

is

suppressed in Eq. (3) and should be read as (Y
l(t)

|Z
0:t

). Eq.

(3) rewards entropy reduction (information gain).

Due to the stochastic nature of this formulation, making

general guarantees is impossible. Instead, chance constraints

are defined which can guarantee that criteria are met with

user defined probabilities. These constraints take the form:

f(X
t:T

)  C (4)

where C is a user defined, vector valued constant and f(·) is

a problem dependent function of the objective variables; the

path in this case. In the case of exploration, the distributions

on the random variables associated with the robot location

(i.e. the path) encode many variables such as variability in

Y
l(t)

, availability of location information, sensor accuracy,

etc. Examples of practical constraints include obstacles to

avoid and uncertainty in robot location. The general frame-

work for information theoretic goals with guarantees via

chance constraints is given as Eq. (3) & (4).

III. EXPLORATION IN PARTIALLY KNOWN

ENVIRONMENTS

This section provides a formulation of the Integrated

Exploration problem which enables probabilistic guarantees.

A. Problem Formulation

The focus of this paper now shifts from the general IE

problem to the IE problem in partially known environments.

Colloquially, the robot can be seen as a ‘tourist’ who has a

high level overview of an area, but still wants to explore this

area in detail. It is assumed that the robot knows the location

of impassible obstacles and may have some prior knowledge

of localization areas and their accuracy. Localization Poor

Areas (LPAs) are regions with highly uncertain localization

information. Examples of these regions include prior mapped

SLAM landmarks or areas with known unique features which

are difficult for the robot to detect (e.g. computer vision).

Location Rich Areas (LRAs) are regions with highly certain

location information such as well known mapped landmarks,

WiFi regions, or areas in which GPS is available. Formal

definitions of these regions will be given shortly. It is

assumed that the region to be explored has at least one LRA;

no LPAs are required.

The robot is tasked with gathering information about the

location of ‘areas of interest’ without getting lost along the

way. In a realistic scenario, the robot may be searching

for wounded soldiers on the ground or potential victims at

the windows of damaged buildings. The robot plans paths

from its current location through the environment to search

for areas of interest. The robot is constrained to terminate

any planned paths inside a LRA, denoted L, with high

probability. This requirement ensures the robot’s ability to

localize and continue exploration.

Assuming that the exploration space of a robot is discrete,

as is common in similar problems, the space can be approxi-

mated by an independent set of 2D grid cells. It follows that

the reward function in Eq. (3) can be written as:

R(X
t:T

) = H(m
l(t)

)� E
Z

t:T

⇥
H(m

n(T )

)

⇤
(5)

where

E
Z

t:T
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n(T )

)

⇤
= E

Z

t:T

"
�

NX

k=1

1X

i=0

P (c
k

= i) log(P (c
k

= i))

#

Here m encodes the location of areas of interest and c
k
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•  Direct feature 
comparison unreliable 

•  A reference set can be 
used to indirectly 
compare images from 
different camera views 

•  Regularized canonical 
correlation analysis 
(RCCA) finds the 
projection which 
maximizes correlation 
between the two sets 
of data 

•  A Robust method for 
computing RCCA is 
used to estimate 
covariance with limited 
training data 

•  Robust CCA provides 
better results than 
RCCA 

(IEEE Trans. CSVT April 2016; IEEE SPL 2015) 

•  Two dictionaries are 
learned for each camera  

•  Sparse representation 
with L2 regularization 
are obtained using the 
coupled dictionaries 
which are used for 
matching 

•  Excellent results are 
obtained on several 
publicly available 
datasets 

(Information Sciences, 355-356, 2016) 

Assembling Queries  
•  Trajectories given on road 

networks with incomplete 
surveillance 

•  Only entry and exit times are 
known/specified for sub-
regions 

•  If entry and exit times are 
obtained from observations 
or pre-specified- could 
objects of interest have 
assembled within the region 
for specified durations? 

•  Both top-k assembly sizes, 
top-k assembly durations are 
handled 

•  Use Contraction Hierarchies 
to speed up shortest distance 

•  We reduce query times by an 
order of magnitude over 
Dijkstra search 

Stream Management 
•  Streams are of unbounded 

size - Cannot store entire 
stream, so cannot determine 
duplicates precisely 

•  Bloom filters (BF) useful, but 
cause false positives, & 
saturate quickly 

•  Our approach uses Bayesian 
analysis - We extend the 
analysis to infer item 
insertion times 

 

_______________________________________________________________________________________________________________________________________________________________________________________________________________ 

 Results on Viper data 

CMC curves on the CUHK Campus dataset  


