CPS: Breakthrough: Secure Telerobotics

Howard Jay Chizeck (PI)

chizeck@uw.edu

Tadayoshi Kohno (Co-PI)

University of Washington Seattle

Introduction

This project – developing methods and tools to enhance security, privacy and safety of telerobotic systems

Results:

- Tools for monitoring and detection of unexpected and malicious activities in telerobotic systems [1-4]
- Mechanisms to prevent security threats against telerobotic systems [6]
- Methods to correct for errors caused by random failures and malicious actions
- Movement-based [5] or force and signature-based "Haptic Passwords" [7,8] for authentication

Telerobotic Systems

Systems where human operators interact with remote robots anywhere where it is too dangerous, too far away, too large or too small to be done by humans

- Underwater, space, mining, firefighting
- Military operations
- Search and rescue robotics
- Telerobotic surgery

Teleropotic systems – sometimes must use existing, publicly available networks, combined with ad-hoc wireless and satellite networks

Telerobotic Security Challenges

Open and uncontrollable communication channels > malicious entities (attackers) can disrupt or take over

Or with false identity

Graduate Students

Tamara Bonaci (PhD UWEE 2014), Junjie Yan, Kevin Huang (NSF GRF), Jeffrey Herror

Undergraduates

T. Yusuf

voshi@cs.washington.edu

Work to Date

Threats Identification and Evaluation

- * Attack classification, based on the impact on human operators:
 - Intention modification
- Intention manipulation
- Hijacking

* Attacker's position in the network:

- Network observer
- Network intermediary

* Experimental Analysis

Impact of attacks evaluated through a series of experiments involving human subjects

 Considered telerobotic tasks:

Fundamentals of Laparoscopic Surgery task

Fitt's law task

Attacks:

- o Denial-of-service
- o Operator's intent reordering
- o Operator's intent loss
- o Operator's intent delay
- o Operator's intent modification

Metrics:

- Overall procedure time
- Fitt's index of difficulty

- Subjective assessment of task difficulty

* Results

- Telerobotic systems currently vulnerable to a variety of efficient attacks (single packet attacks!)
- Some attacks easily preventable using well-established and readily available security mechanisms (encryption and authentication methods currently under evaluation)
- Tensions between cyber security, safety and usability requirements of teleoperated systems render many existing security solutions *infeasible* → teleopration security a unique challenge!

Haptic Passwords

- Combines 'what you know' and 'who you are'
- Uses motion and force information to authenticate user
- Significantly increases the password space

Preliminary Experimental Results

- 9 subjects to date
- 100% correct identification (using signature; (less than ~85%) using simple mark (letter L)
- Very small chance of forgery (false positive) if tolerate having to re-enter signature 1 time in 10

References

2014 USENIX Summit on Health Information Technologies, San Diego, CA, August 2014

2014 Osciriol Sulmini on Hearton morniation recliminagies, sall oriego, co., rugost 2014.

[2] T. Bonaci, J. Herron, T. Yusu, J. Yan, T. Kohn, H. J. Chizeck, "To Make a Robot Secure: An Experimental An Against Teleoperated Surgical Robotics," arXiv: 1504.04339, April 2015.

[3] T. Bonaci, A.Awa, J. Herron, R. Calo, H. J. Chizeck, "To Jid H Nw Waw. On Law and Operator Signatures for Te

2015.
[6] Howard Jay Chizeck, Tamara Bonaci. "Using Supplemental Encrypted Signals to Miligate Man-in-The Middle Attacks on Tr. International Patent Application Number: PCT/US12/F528; filed 10/30/2013.
[7] Howard Jay Chizeck, Junjie Yan, Tamara Bonaci, Jeffrey Herron, Kevin Huang, Aaron Alva. "Haptic Passwords." Provisional filed 3/17/2015.

[8] J. Yan, K. Huang, T. Bonaci, and H. J. Chizeck. "Haptic Passwords." 2015 IEEE International Conference (IROS), Hamburg, Germany, Sept. 28-Oct. 2, 2015.