Principal Investigators: Radha Poovendran, Linda Bushnell Network Security Lab, Department of Electrical Engineering University of Washington, Seattle {rp3, lb2}@uw.edu

Need for Science of CPS Security

- CPS are inviting targets for intelligent, persistent attacks
- Composition of multiple attacks and development of mitigation strategies are open problems in cyber security
- Need to provide verifiable guarantees of CPS performance and security in the presence of cyber attacks

Scientific Questions Addressed

- How to model intelligent, persistent attacks and their impact on CPS?
- How to compose multiple attacks and develop efficient mitigation strategies against composed attacks?
- How to verify the mitigation strategies provide required performance, safety and security of CPS?

Our Passivity Based Approach

- Provides composition rules of multiple adversary models
- Enables identification of new attack primitives via decomposition of composed attacks
- Leads to seamless integration into dynamical models of CPS
- Adaptive incorporation of newly-discovered attacks into composed adversary mode
- Develop techniques for verification of passivity-based adversary models and mitigation via approximate bisimulation

Thrust 1: Passivity Modeling of Individual Attacks and Mitigation

- Formulate passive dynamical models representing impact of attack on CPS
- Identify class of cyber-attacks that admit passive dynamical representation
- Model the time-varying mitigation strategy as passivity dynamical system
- Design mitigation strategy to guarantee security properties of CPS

Thrust 2: Passivity-Based Composition of Adversary Models and Mitigation

- Compose attacks by non-colluding, colluding, and competing adversaries
- Compose attacks targeting distinct, interdependent CPS components
- Decompose a composed adversary model into attack primitives
- Develop efficient mitigation strategies against composed

A Passivity Framework for Modeling and Mitigating Multi-Virus Propagation

- Developed composition rules for competing and co-existing viruses
- Feedback interconnection of multi-virus propagation and mitigation
- Characterized required patching rate to remove viruses as the passivity index of the propagation dynamics

Flow Redirection Attack via Jamming

- Source-destination flows traverse multiple relays
- Adversary controls set of malicious relays
- Malicious relays drop, replay, delay, or re-order routed packets
- Flow redirection attack: Jam non-malicious relays
- Network flows re-routed through malicious relays

Passivity-Based Approach for Modeling Flow Redirection Attack

- Developed control-theoretic model of flow allocation, congestion delay, and jamming delay induced by adversary
 - Interaction between components modeled as negative-feedback interconnection of passive dynamical systems
- Developed jamming strategy to reach desired flow allocation via passivity-based approach

References

[1] P. Lee, A. Clark, L. Bushnell, and R. Poovendran, "A Passivity Framework for Modeling and Mitigating Wormhole Attacks on Networked Control Systems," *IEEE Transactions on Automatic Control*, 2014.

[2] P. Lee, A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, "Jamming-Based Adversarial Control of Network Flow Allocation: A Passivity Approach," American Control Conference, 2015

[3] P. Lee, A. Clark, L. Bushnell, and R. Poovendran, "Passivity Framework for Composition and Mitigation of Multi-Virus Propagation in Networked Systems," American Control Conference, 2015

[4] P. Lee, A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, "A Host Takeover Game Model for Competing Malware," Conference on Decision and Control (CDC), 2015