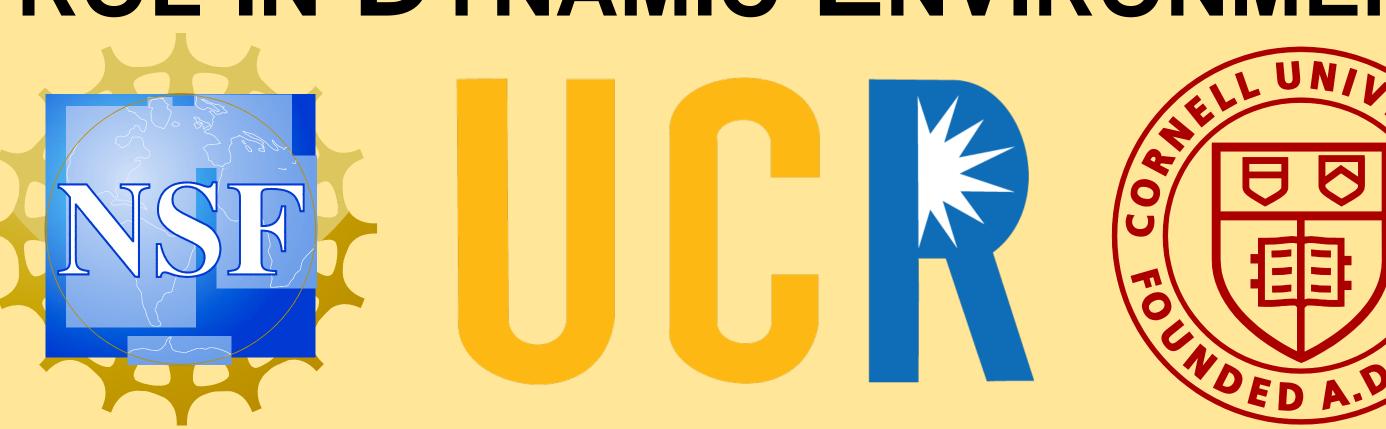
CPS: Synergy: Distributed Sensing, Learning and Control in Dynamic Environments

BIR BHANU (PI), UNIVERSITY OF CALIFORNIA, RIVERSIDE C. RAVISHANKAR (CO-PI), UNIVERSITY OF CALIFORNIA, RIVERSIDE AMIT ROY CHOWDHURY (CO-PI), UNIVERSITY OF CALIFORNIA, RIVERSIDE MARK CAMPBELL (CO-PI), CORNELL UNIVERSITY

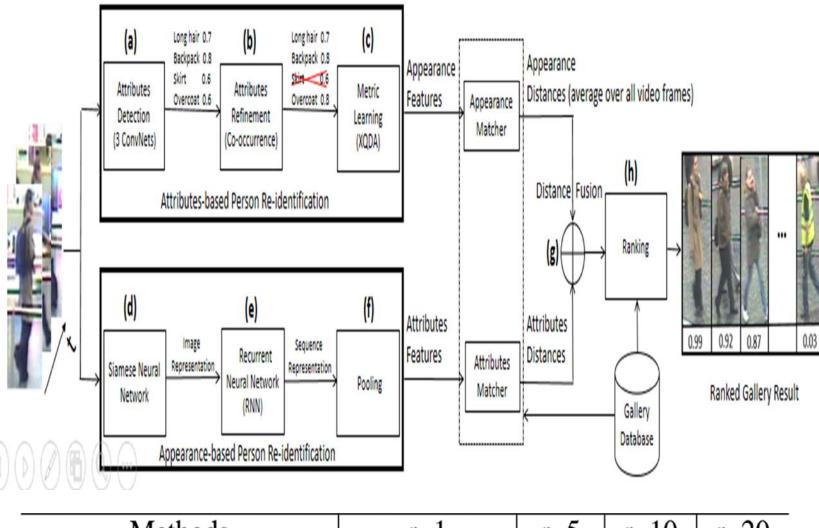


Objectives

- To develop a synergistic framework for fixed and mobile sensors to collaborate on scene understanding
- To perform a tight integration of perception and action and to advance cyber-physical systems by exploring a class of synergies across: control, video understanding, and data management under uncertainty
- To experimentally validate the framework for surveillance domain using a testbed with autonomous agents

Attributes Co-occurrence Pattern Group Structure Preserving Network Consistent Re-identification Mining for Video-based Person Re-identification

- Visual attributes (e.g., hair and shirt color) offer a human understandable way to recognize people
- Design three ConvNets for attributes detection
- Exploit co-occurrence information to improve attributes' descriptive capabilities
- Propose an attributesbased method and then combine it with an appearance-based model for final prediction
- Achieve better and more consistent results on two public datasets (IEEE AVSS, 2017)



Methods	r=1	r=5	r=10	r=20
Attributes	3.7	9.7	14	24.2
Ours without refinement	59.7 (0.034)	85.3	93.6	98
Ours	60.3 (0.035)	85.3	93.6	98
RCNN [17] CVPR 2016	58.3 (0.035)	84.6	92	96.7
TDL [26] CVPR 2016	56.3	87.6	95.6	98.3
TAPR [9] ICIP 2016	55	87.5	93.8	97.2
SI^2DL [27] IJCAI 2016	48.7	81.1	89.2	97.3

Results on iLIDs-VID dataset

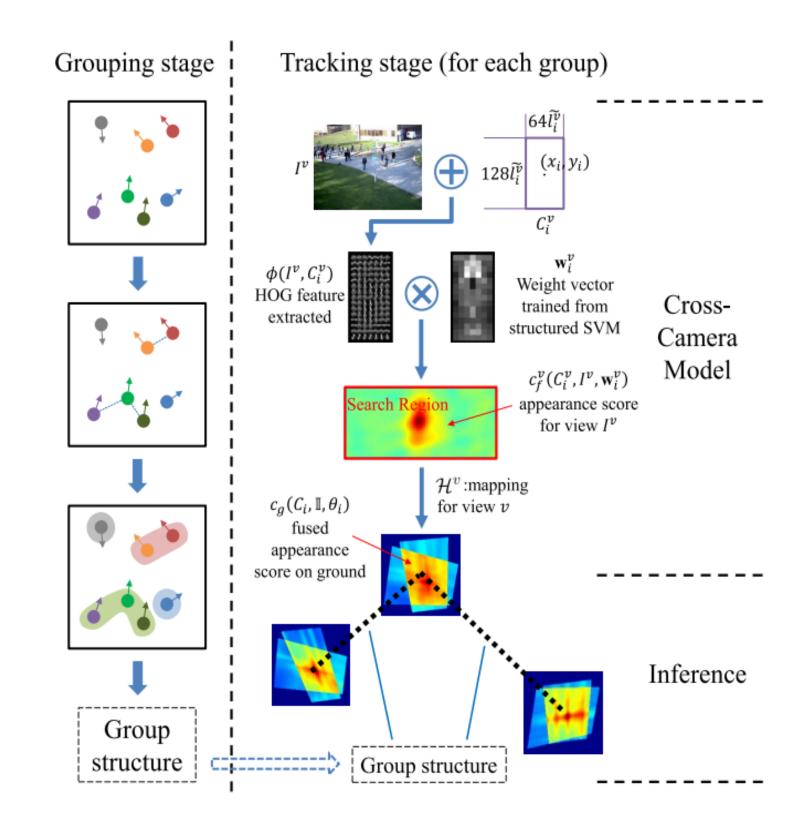
Methods	r=1	r=5	r=10	r=20
Attributes	4.3	15.3	31	43
Ours without refinement	72.7 (0.041)	93	96.3	98.3
Ours	73.2 (0.038)	93	96.3	98.3
RCNN [17] CVPR 2016	70.6 (0.051)	92.3	95.3	97.3
TDL[26] CVPR 2016	56.3	87.6	95.6	98.3
TAPR[9] ICIP 2016	55	87.5	93.8	97.2
SI^2DL [27] IJCAI 2016	76.7	95.6	96.7	98.9

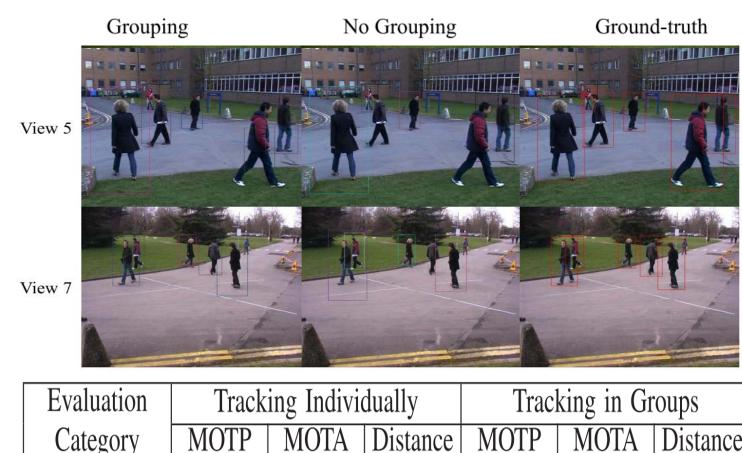
Results on PRID 2011 dataset

81.89% | 70.75% | 90.36

Pedestrian Tracking in a Multicamera Video Network

- A new cross-camera model is proposed, which enables the fusion of the confidence information from all camera views
- Group structures on the ground plane provide extra constraints between pedestrians
- The structured support vector machine is adopted to update model
- Excellent results are obtained on challenging data (IEEE Trans. CSVT, 2017)





85.14% 72.71% 26.44 **Results on PETS 2009 dataset**

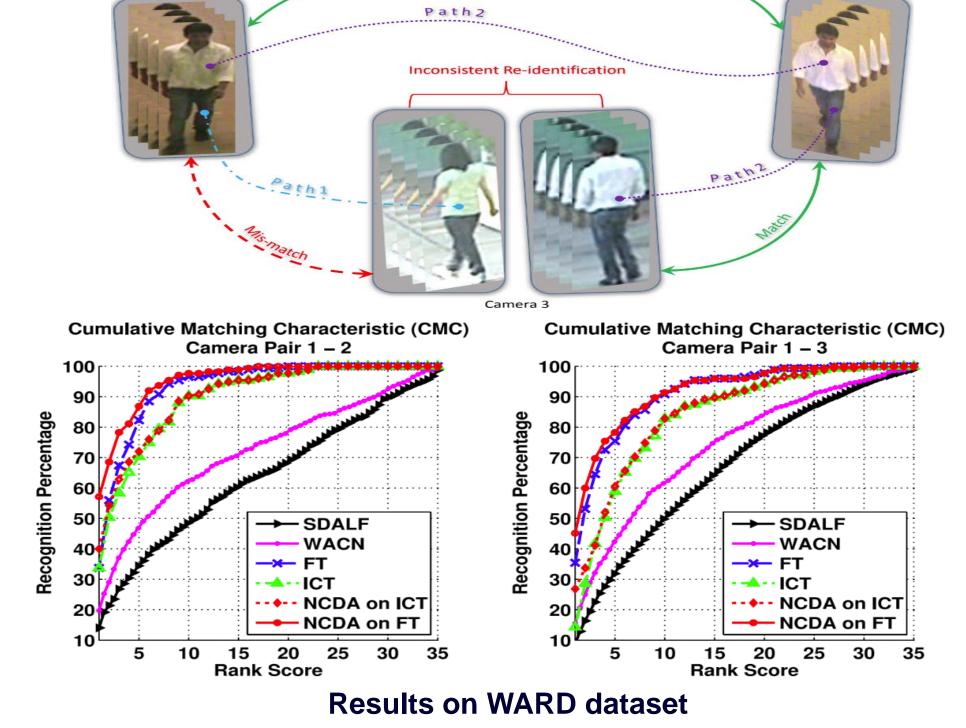
82.89% | 79.42% | 136.41

82.42% | 83.42% | 68.17

& Continuous Adaptation of Person **Identification with Minimal Labeling**

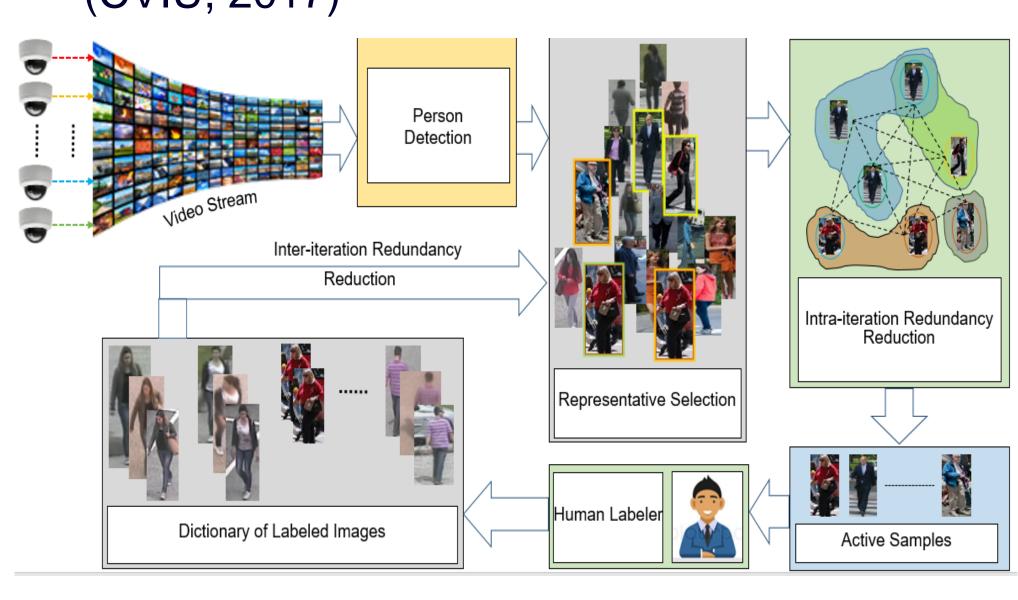
Network Consistent Re-identification

- Address consistent matching as a data-association task over network perspective
- Formulate an optimization problem to maximize overall pairwise similarity while abiding by network level constraints (IEEE TPAMI, 2016)

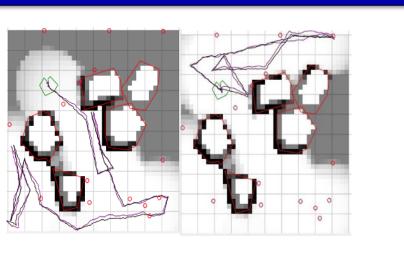


Continuous Adaptation of Person Identification with Minimal Labeling

- Propose a sparse representative selection based approach
- Formulate as a convex optimization problem, which endorses selection of samples with the most variabilities (CVIU, 2017)



Exploration with Localization Guarantees



green: goal region black: actual path

Key results:

- General info gathering framework
 - Maximizing information goals
 - Probabilistic guarantees
- Asymptotic guarantees as the # of samples increases
- Bound on the reward for partially known environments
 - Speeds computation (>1000x) to real time
- Validation by simulation/experiment (IEEE Trans. Control Sys., 2018)

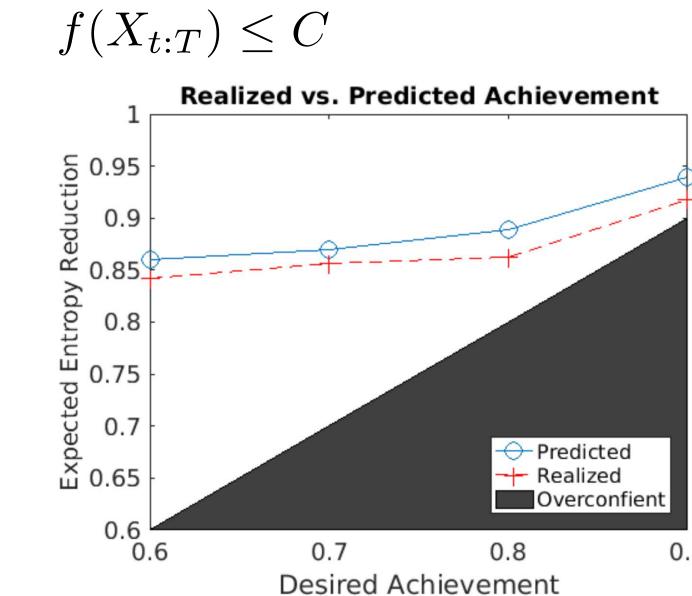
Path Optimization

$$X_{t:T}^* = \operatorname{argmax}_{X_{t:T}} R(X_{t:T})$$

Information Reward

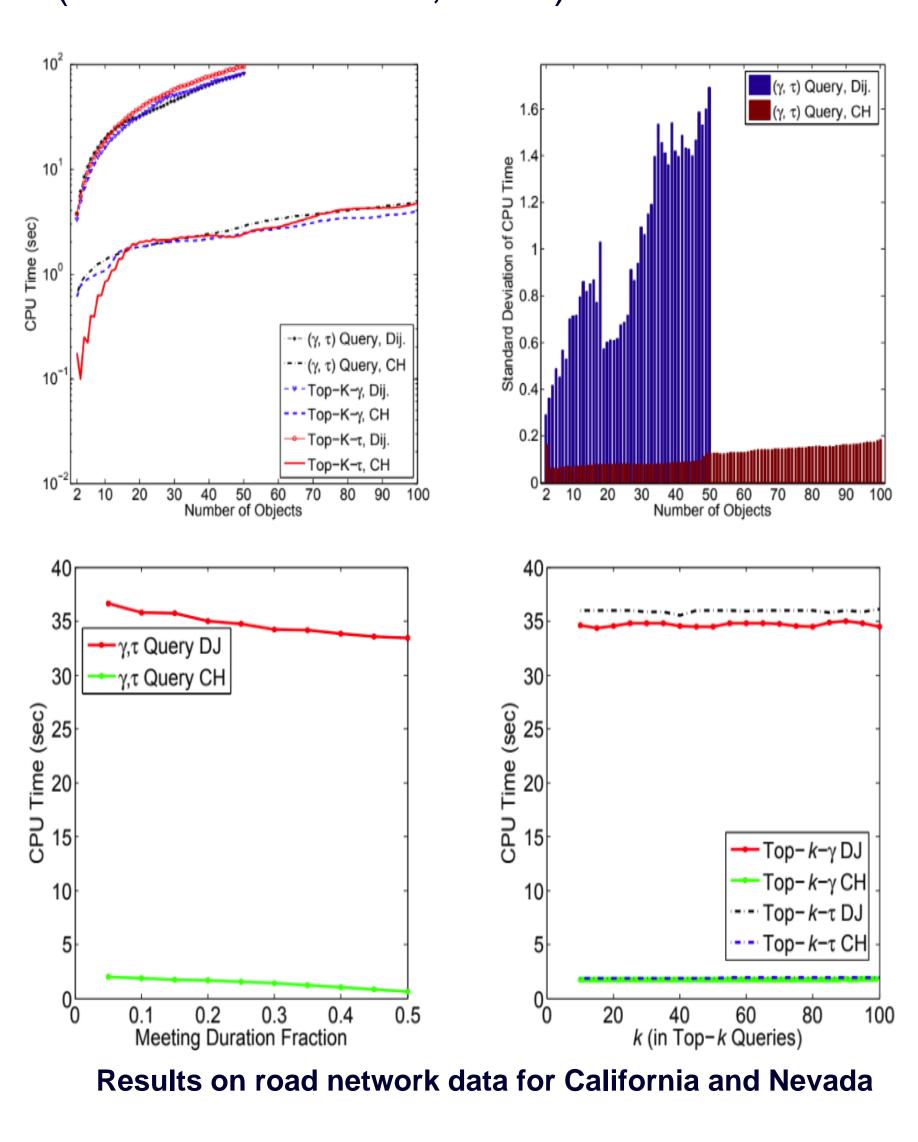
$$R(X_{t:T}) = H(Y_{l(t)}) - \underset{Z_{t:T}}{\mathbb{E}} \left[H(Y_{n(T)}) \right]$$

Information constraint



Assembly Queries: Planning & Discovering Assemblies of Moving **Objects Using Partial Information**

- Introduce the novel and important class of assembly queries:
- "Assembly discovery" (determine whether two or more moving objects could have had a meeting within a region of interest)
- "Assembly planning" (arrange for meetings for a group of friends visiting a city without violating their remaining schedules)
- Provide efficient solutions given incomplete trajectory information, using the topology of the underlying transportation network
- Present a formal model for the general problem and prove the correctness of our algorithm
- Utilize a preprocessing method based on Contraction Hierarchies to gain orders of magnitude speed up over the naïve Dijkstrabased methods (ACM SIGSPATIAL, 2017)



Acknowledgment: This work is supported in part by NSF CPS grant 1330110