
CPS Education: a practical perspective?

Raj Rajkumar

ECE & Robotics
Carnegie Mellon University
raj@ece.cmu.edu
http://www.ece.cmu.edu/~raj

Some Key Elements for CPS Education

- Terminology
- · Graduate vs. undergraduate students
- Topics of focus
- Learning materials
- Labs
- Placement
- Course examples @ Carnegie Mellon

Carnegie Mellon

Some Questions to be Addressed

- Appropriate for undergraduates?
 - For seniors, juniors or earlier?
 - Or seminar courses for grads?
- Core courses? Or which prerequisites?
- Co-teaching or Sole instructor?
- Academic time constants for introducing new courses
 - What about CPS-centric curricula?
- Textbooks?

Terminology

- "CPS" is a term recognized by many faculty and graduate students at CMU Engg. College
- CPS is a term not yet recognized by undergraduate engg. students
- · How about the world at large?
- What is assumed in a CPS course?
- · What will be taught?

Carnegie Mellon

Graduate Courses

- Cover breadth and a lot of depth
- Tension between cutting-edge research and established principles
- Need a set of textbooks to choose from
 - Which engineering departments?
 - Computer science cross-pollinated with whom?
- Projects
 - Group projects vs individual projects
- Papers, discussions and guest lectures

Undergraduate Courses

- Need standard text
 - Lots of exercises
 - Powerpoint slides
 - Instructor guides
 - Possibly voluminous

 Need long-term commitment from faculty and parent department(s)

Carnegie Mellon

CPS Course Topics

- · Embedded systems
- Wireless sensor networks
- · Real-time systems
- · Energy grids
- Safety
- Security
- Subjects:
 - Formal methods
 - Fault-tree analysis

CPS Project Topics

- Agriculture
- Manufacturing
- Transportation (Parking)
- · Health and activity monitoring
 - Coupled with social networks
- · Energy management
- Infrastructure and environmental monitoring
- Controls
- Common system infrastructure across domains and apps

CPS: An Embedded RT Variant

- Embedded concepts:
 - I/O and microcomputers
 - Hardware interrupts, timers, soft interrupts
 - OS notions of tasks and context switching
 - Real-time scheduling policies and analysis
 - Power management
- Application-level concepts:
 - Feedback control theory (P/I/D controllers)
 - Signal processing (sampling, Nyquist, noise, filters, ...)
 - Sensor fusion (multiple sensors, ...)
- Glamorous projects:
 - Android smartphones
 - Android tablets
 - iCreate robots?

CPS Course: A WSN Variant

- · Wireless Sensor Network Layering
 - Sensors and principles
 - Actuators and principles
 - Complete network stack
 - Wireless medium characteristics
 - OS issues
 - Localization
 - Distributed database issues
- Multiple WSN nodes per group
- Freedom and flexibility to buy sensors and actuators
- Monitoring and control of physical environments

Android

- Open source
- Cheap ("free")
- OS extensions for adding new capabilities

Exit One's Comfort Zone

- ECE and CS departments may have faculty working on
 - Controls
 - Energy
 - Embedded Systems
 - Software Systems
 - Hardware
 - Theory
 - Al
 - Formal Methods
 - Languages
 - Security
 - **–** ..

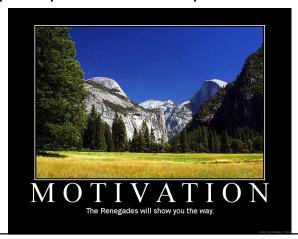
Carnegie Mellon

Really Leave the Comfort Zone...

- · How about topics in
 - Structures
 - Buildings
 - Bridges
 - Transportation infrastructure
 - Materials
 - Sensors
 - Chemicals, Energy
 - Batteries

... and keep going

- Manufacturing
 - CNC → CPS, Networks, Wireless, Coordinated
 - Not "subtractive" fabs → "Additive" fabs
- Bio-medical systems
 - · Computer-assisted surgery
 - · Nano-bio materials


Carnegie Mellon

Talking to Civil Engineers

- Recently, gave invited lecture to junior and senior Civil engineering students
- ... at a neighboring university
- Students knew very little about software and essentially nothing about networks
- Topic was Vehicular Networks and how they will affect traffic and traffic engineering!

Motivate!

 Which appealing applications that students can relate to can motivate CPS principles and concepts?

Carnegie Mellon

Experimentation

- What lab equipment and facilities can be used?
- Can we have some prototypical labs that institutions can reuse?
- Can we have "virtual" labs for CPS experimentation?
 - Even 3-D options may be possible

Placement

- How to showcase CPS courses as being attractive to employers?
 - Many students, particularly at the M.S. level, will go where the employers are
- A clearinghouse for employers and potential CPS grads?

Carnegie Mellon

Roles of Federal Agencies

- How can federal agencies stimulate the creation of courses and textbooks?
- How can practitioners be exposed to these courses and teaching/training materials?

- Can labs be seeded?
- Can (remote) testbeds be made accessible to grad students?

The Challenge

- Information and communication technologies permeating every aspect of life
- 16
- Every engineer ought to know how to use computers and perhaps what writing software is about (at some level of abstraction)
- Every programmer ought to know how and where *physical constraints* play a role
- A CPS major that spans engineering disciplines
 - The CPS version of Harvey Mudd's General Engineering Degree