
NSF Secure and Trustworthy Cyberspace Inaugural Principal Investigator Meeting

Nov. 27 -29th 2012

National Harbor, MD

Interested in meeting the PIs? Attach post-it note below!

CRII:	SaTC:	A	Language-based	
				Approach	to	Hybrid	Mobile	App	Security		

(NSF	CNS	#1566321)	

Meera	Sridhar	
University	of	North	Carolina	CharloKe	

Graphic related to project

Please contact PI Sridhar at msridhar@uncc.edu for more information.

Jan. 9 – 11th 2017,
Arlington, VA

NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting

pic2shop	Code	InjecMon	AKack	[Jin	et	al.,CCS,2014]	

•  Mobile app security a pressing social responsibility:
 - 2 billion smartphone users globally today, including children!
 - Proposed research will mitigate a class of dangerous vulnerabilities in smartphones today.

•  Case studies, practical examples, research experience:
 - graduate-level courses, research seminar on hybrid app security.
 - MS, Certificates in Cyber-Security at UNCC.
 - curricula specifically targeted for the Women in Computing initiative at UNCC

•  University-Industry collaborations in mobile security research:
 - PI active member of NSF/UCRC UNCC in Charlotte Metropolitan area
 - members include major financial institutions
 - Charlotte also home to major energy, healthcare industries

	Background	and	MoMvaMon	

ScienMfic	Impact	 Broader	Impact	

Related	Work	

Detecting/Mitigating Code Injection Attacks
- Code-injection attacks in hybrid apps introduced; new channels e.g., barcode scanner, messages, NFC [Jin et al.,CCS,2014]
- New code-injection channel; malicious script injected using HTML5 text box input type paired with document.getElementById(”TagID”).value. [Chen et al.,TRUSTCOM,2015]
- new code-injection type; JS encoded in human-unreadable format [Xiao et al.,CBD,2015]
- mitigate code injection attacks by generating behavior state machines of the app [Xiao et al.,CBD,2015]

Access Control and Permission-based solutions
- page-level access control [Shehab & AlJarrah,MobileDeli,2014], frame level access control [Jin et al.,ISC,2015], context-aware permission control system [Singh,RAID,2013]
- RestrictedPath browser & system level enforcement; sees if app deviates from intended path [Pooryousef & Amini,ISCISC,2016]
Information Leaks
- Static analysis of inter-communication between Java & JS to determine programming errors [Lee et al.,ASE,2016]
Detecting Over-privilege
- MinPerm extracts and compares required and requested permissions from hybrid app APKs [Mao et al.,Journal of High Speed Networks,2016]

Approach:	Language-based	Enforcement	through	In-lined	Reference	Monitoring	

APK
Decompiler

Binary
Rewriter

Untrusted
class files

Security
Policy

Static
Analysis

Untrusted
HTML,JS,CS

Region 1

Region 2

Region 3

Trusted
HTML, JS,CS

Trusted
class files

APK
Compiler

Untrusted APK

Trusted APK Developer Level
Enforcement

Store Level
Enforcement

End-User Level
Enforcement

High	Level	Enforcement	Plan	 Technical	ImplementaMon	Sketch	

•  Security policies:
 - Systematic mapping of hybrid attack surface
 - establishing security policy class targeting effective language – based enforcement
 - important research objective: define limitations of security policies enforceable by runtime
monitoring

•  Runtime monitoring design and implementation challenges:
 - effective complete mediation
 - effective tamper-proofing of monitoring system in complex, cross-platform environment

•  Infer fine-grained permissions-regions for pages in the app:
 - design a static-analysis algorithm
 - permissions regions will:
 - improve bridge access granularity
 - serve as security policy models for integration into monitoring framework

Diagram follows the format of: [Georgiev et al.,WWW,2015]

(1) QR code
injected into app
through camera

QR Code with
malicious
JavaScript

(3) Script fetches
the Geolocation

data from the phone

(4) Geolocation
data is sent to
the attacker

HTML page of
the app

(2) Script executes
in the embedded

browser of the app

Geolocation
being tracked

