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•  Mobile app security a pressing social responsibility: 
      -   2 billion smartphone users globally today, including children! 
      -   Proposed research will mitigate a class of dangerous vulnerabilities in smartphones today. 
 
•  Case studies, practical examples, research experience: 
      -   graduate-level courses, research seminar on hybrid app security. 
      -   MS, Certificates in Cyber-Security at UNCC. 
      -   curricula specifically targeted for the Women in Computing initiative at UNCC 
 
•  University-Industry collaborations in mobile security research: 
      -   PI active member of NSF/UCRC UNCC in Charlotte Metropolitan area 
      -   members include major financial institutions 
      -   Charlotte also home to major energy, healthcare industries 
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Detecting/Mitigating Code Injection Attacks 
-   Code-injection attacks in hybrid apps introduced; new channels e.g., barcode scanner, messages, NFC [Jin et al.,CCS,2014] 
-   New code-injection channel; malicious script injected using HTML5 text box input type paired with document.getElementById(”TagID”).value. [Chen et al.,TRUSTCOM,2015] 
-   new code-injection type; JS encoded in human-unreadable format [Xiao et al.,CBD,2015] 
-   mitigate code injection attacks by generating behavior state machines of the app [Xiao et al.,CBD,2015] 

Access Control and Permission-based solutions 
-   page-level access control [Shehab & AlJarrah,MobileDeli,2014], frame level access control [Jin et al.,ISC,2015], context-aware permission control system [Singh,RAID,2013] 
-   RestrictedPath browser & system level enforcement; sees if app deviates from intended path [Pooryousef &  Amini,ISCISC,2016] 
Information Leaks 
-   Static analysis of inter-communication between Java & JS to determine programming errors [Lee et al.,ASE,2016] 
Detecting Over-privilege 
-   MinPerm extracts and compares required and requested permissions from hybrid app APKs [Mao et al.,Journal of High Speed Networks,2016] 

Approach:	Language-based	Enforcement	through	In-lined	Reference	Monitoring	
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•  Security policies: 
      -   Systematic mapping of hybrid attack surface 
      -   establishing security policy class targeting effective language – based enforcement 
      -   important research objective: define limitations of security policies enforceable by runtime 
monitoring 
  
•  Runtime monitoring design and implementation challenges: 
      -   effective complete mediation 
      -   effective tamper-proofing of monitoring system in complex, cross-platform environment 
 
•  Infer fine-grained permissions-regions for pages in the app: 
      -   design a static-analysis algorithm 
      -   permissions regions will: 
           -   improve bridge access granularity 
           -   serve as security policy models for integration into monitoring framework 
 
 

Diagram follows the format of: [Georgiev et al.,WWW,2015] 
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