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Outline 

¢  Time in CPS 
¢  Clock and synchronization fundamentals 
¢  Synchronization protocols 
¢  State of the Art and Issues 
¢  Summary 
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Synchronized clocks are critical components 
of many current CPS 

Bosch-Rexroth 

General Electric 

Veselin Skendzic 

Huawei 

Teletronics Brüel & Kjaer Alan D. Monyelle, USN 
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Synchronized clocks are used to: 

¢  Implement time-slotted transport protocols 
¢  Timestamp sensor events 
¢  Cause events: 

l  Synchronous sensor sampling 
l  Synchronous actuation 

¢  Flow control 
¢  Scheduling 
¢  … 
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Clock basics 

Common LSB values are 5-40 ns often 
corresponding to Ethernet PHY frequencies 
or FPGA clock rates 

LSB determines the timing resolution 

Oscillators characterized by: 
•  Frequency drift => degrades clock accuracy 
•  Noise => degrades clock precision 
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Clock basics: steered clock 

Clock control subsystem 
Must remove noise from  
Time transfer channel. 
  Filtering limited by  
oscillator stability 
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Oscillators 
(where it all starts!)  

Symmetricom 
MHM2010 
Active Hydrogen 
Maser Clock ~
$200K, 75W,  
475 lbs 

CTS 
Corporation  
CTS CB3LV 
~$1 

Symmetricom 
SA.45s CSAC ~
$1000 
120mW,  
35 grams 
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Oscillator attributes 

Type Cost Integration 
time 

Holdover 
(5 °C temp 
change) 

Temperature 
variation 

XO  $1  1 sec 500 ms / day 1x10-4 / deg C 

TCXO  $40  100 sec 500 µs / day 1x10-7 / deg C 

OCXO  $150  1000 sec 50 µs / day 1x10-8 / deg C 

CSAC $1000 104 sec 3 µs / day 6x10-12 / deg C 

Rb $800 104 sec 1 µs / day 1x10-12 / deg C 

Cs  $50K >10days >10 days@10ns 2x10-14 / deg C 

H-Maser $200K >10 days >10 days@1ns 1x10-14 / deg C 
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Clock synchronization basics 

¢  One-way protocols (e.g. GPS, IRIG-B) 

¢  Two-way protocols (e.g. PTP, NTP) 
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Time Transfer Using Dedicated Timing 
Infrastructure 
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Time Transfer Using the Data Network 
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Motivation for network based data and 
time synchronization… 

Image courtesy of National Instruments 
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Clock synchronization vulnerability 

¢  Protocol absolute accuracy 
l  Master (source) accuracy 

¢  Protocol relative accuracy 
l  Path length and asymmetry errors 
l  Device calibration 

¢  Protocol precision 
l  Clock and time bridge jitter 
l  Path jitter 

¢  System vulnerabilities 
l  Device failure 
l  Path failure or reconfiguration 
l  Configuration errors 
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¢  GNSS (GPS, Glonass, Compass, Indian 
regional, Galileo) 

¢  NTP (and SNTP) 
¢  PTP(and power, AVB, telecom and industrial 

profiles) 
¢  IRIG-B and related serial time codes 
¢  1PPS + serial string 
¢  T1/E1 (frequency only) 
¢  DOCSIS Timing Interface 
¢  TTE (SAE AS6802) 
¢  Loran 
¢  WWV 

Clock synchronization protocols 
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¢  ΔMS major corrections are  
¢  Geometric (ephemeris) ~ 65 ms  
¢  Ionosphere delay (from model or L1-L2 dispersion) ~ 65 ns 
¢  Troposphere delay ~ 5 ns 
¢  Calibration and multipath ~ 10 ns (outdoors) 
¢  Receiver delay calibrations ? 
¢  Master clock relativity corrections ~ 38 µs/day 

¢  Accuracy of a GPS-based system 
¢  Easy: 1 µs 
¢  Possible: 50 ns 
¢  Hard: 10 ns or better 

         (data from Judah Levine-NIST): 
o    Issue: availability indoors/urban canyons 

 

GPS 
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¢  Major impairment is path length and asymmetry  
¢  Accuracy of a NTP-based system 

¢  Over the Internet typically a few ms 
¢  Over an isolated LAN low µs possible 

 

NTP 
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¢  Defined by IEEE-1588 standard 
¢  Major impairment is path length and asymmetry  
¢  Accuracy of a PTP-based system 

¢  Over an isolated LAN without hardware support or time 
bridges: sub ms to low µs possible but typically traffic 
dependent 

¢  With hardware support and time bridges (IEEE 1588 
boundary or transparent clocks) traffic independent 
¢  Easy: 50-100 ns 
¢  Hard: low to sub-ns level 

 

PTP 
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¢  Major impairment is path length and asymmetry  
¢  Precision is improved by SyneE typically to 10-100 ps 

range 

 
 

PTP+SyncE 
 (ITU-T Std. G.
8262, 2007) 
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White Rabbit Performance: 
Sub-nanosecond synchronization error 
over three 5km fiber optic Ethernet links! 

Maciej Lipinski, et.al., ISPCS 2011, Munich 
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¢  Opportunities: rethink old algorithms and 
techniques, new applications… 

¢  Challenges: handling latency, hardware/software 
tradeoffs and interfaces, development 
environments, multiple time sources, 
heterogeneous networks and protocols 

¢  Issues: SyncE not well integrated with other 
protocols, cost of good clocks and time bridges, 
security (when applicable), timing hardware/
software interfaces  

 

Opportunities, challenges, and issues 
related to presence of very precise and 
accurate global time 
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¢  What would we do differently if CSACs were 1 ns, 
20mw, $15? 

¢  What would we do differently if absolute time 
accurate to <100 ns was available at every 
Internet port? <5 ns? 

¢  Hardware support for clock synchronization is 
becoming ubiquitous in PHYs and communication 
systems- what additional hardware support is 
needed for time-centric applications? 

¢  How can precise global time be used to make 
systems more robust? 

¢  How can we make timing itself more robust? 

 

Summary questions 



Doug Arnold, John Eidson            22 

 

Discussion 
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¢  One-way protocols depend on knowing ΔMS 
l  Frequency transfer degraded by ΔMS jitter 
l  Time transfer degraded by ΔMS jitter and drift 
¢  ΔMS must either be modeled or determined by 

calibration measurements other than the one-way 
message 
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¢  Two-way protocols depend on knowing both ΔMS 
and ΔSM 

¢  Time transfer precision degraded by path jitter 
¢  Time transfer accuracy by path drift and 

asymmetry 
¢  Path asymmetry must either be modeled or 

determined by calibration measurements other 
than the two-way messages 

¢  Bridges and routing are major sources of 
asymmetry 
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UTCi vs. UTC 

Even atomic clocks 
drift! Keeping precise 
and accurate time is 
very difficult. 
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IEEE1588 Boundary Clock 

µs-ms 
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IEEE 1588 Transparent Clock 

µs-ms 
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How well can you synchronize? 
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From: Update on High Precision Time Synchronization, Vook, et.al., 
IEEE-1588 Conference, Zurich, October 2005 

Typical 8 ns LSB 
performance 
 
1 GHz design 
(1 ns LSB) 
 
1000 points over 
15 minutes: 
direct link 
 
 

Mean -0.311 ns 
STD    0.771 ns  
Max    1.60   ns  
Min   –2.40   ns 
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IEEE 1588v2/PTP and SyncE/ITU-T G.8261 

From: “DP83640 Synchronous Ethernet Mode: Achieving Sub-nanosecond Accuracy 
in PTP Applications, National Semiconductor Application Note 1730, David Miller, 
September 2007 
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How do you use a synchronized clock? 
(all 3 forms supported in DP83640 PHY chip) 
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Synchronization requirements for wireless 
air interface technologies 

Technology Frequency Accuracy Phase Accuracy 
GSM (2G) ±50 ppb Not required 
UMTS ±50 ppb Not required 
CDMA 2000 ±50 ppb ±3.0 µs  
WCDMA ±50 ppb 

 
±1.25 µs reference to BTS 
±2.55 µs between base stations 

Pico RBS (WCDMA 
and GSM) 

±100 ppb 
 

±3.0 µs  
 

Based on a Juniper Networks white paper- ‘Synchronization Deployment 
Considerations for IP RAN Backhaul Operators’ 
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Telecom time transfer field trial in China 

¢  Each chain had 15 
boundary clocks 

¢  BCs used SyncE for 
frequency and 1588 
for time transfer 

¢  Accumulated error  
< 3 µs requirement 
for TD-SCDMA 

From “Using IEEE 1588 and Boundary Clocks 
for Clock Synchronization in Telecom 
Networks”- Ouellette, et.al. IEEE 
Communications Magazine • February 2011 
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Aircraft telemetry 
(courtesy Lee Eccles, Hung 
Mach, Larry Malchodi of 
Boeing) 
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Courtesy of Teletronics!
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CERN’s White Rabbit Project 
(based on “White Rabbit: a PTP Application for Robust 
Sub-nanosecond Synchronization”- Maciej Lipinski, et.al., 
ISPCS 2011 Munich) 

¢  Goal: Develop an alternate timing and control 
system for the General Machine Timing at CERN 

¢  Synchronization of up to 2000 nodes with sub-
nanosecond accuracy, an upper bound on frame 
delivery and a very low data loss rate 

¢  Based on and compatible with Ethernet (IEEE 
802.3), Synchronous Ethernet (ITU-T Std. G.8262, 
2007) and IEEE 1588-2008. 

¢  For sub-nanosecond EVERYTHING matters: 
oscillators; media, PHY, board asymmetry, 
temperature, …  
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T-REX Controller 

Model time delays 

Computations Sensors Actuators 
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Renesas vs. XMOS: Measured I/O timing 
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