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The Research Challenge:

Avast array of different organizations collect similar data or data about similar populations.
Sharing this data can bring benefits in social, scientific, business, and security domains.
When the data is sensitive, can we unlock these benefits while avoiding the need to share
the data between the different entities?
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Sharing the computation (and not the data) across
multiple entities.

Computing oversimilardata, or data about similar
populations, stored at different organizations as a
single, massive, joint dataset.

Re-design the computation to alleviate the privacy
concermns of different entities.
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4 Our framework: Our approach:

Differential privacy: A formal Distributing differential privacy
mathematical framework for measuring  computations: Using algorithm design,
and enforcing the privacy guarantees  cryptographic, statistical, and
provided by statistical computations. programming languages tools.
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