Control Hierarchies and Tropical Algebras

<u>Jörg Raisch</u>^{1,2}, Xavier David-Henriet^{1,2,3}, Tom Brunsch^{1,3}, Laurent Hardouin³

¹Fachgebiet Regelungssysteme Fakultät Elektrotechnik und Informatik, TU Berlin

²Fachgruppe System- und Regelungstheorie Max-Planck-Institut für Dynamik komplexer technischer Systeme

³Laboratoire d'Ingénierie des Systèmes Automatisés Université d'Angers

Outline

- Motivation
- 2 A Behavioural View on Control Hierarchies
- A Specific Scenario
- A Few Essentials of Dioid (Tropical) Algebras
- 5 Specific Scenario Revisited

Outline

- Motivation
- 2 A Behavioural View on Control Hierarchies
- A Specific Scenario
- 4 A Few Essentials of Dioid (Tropical) Algebras
- 5 Specific Scenario Revisited

- Want to address large-scale/complex control problems
- Too many degrees of freedom for monolithic controller design
- Need to impose structure to reduce degrees of freedom
- Hierarchical control architecture particularly intuitive
- Heuristically designed hierarchical control ubiquituos in industry

Motivation and Aims

Motivation

- Want to address large-scale/complex control problems
- Too many degrees of freedom for monolithic controller design
- Need to impose structure to reduce degrees of freedom
- Hierarchical control architecture particularly intuitive
- Heuristically designed hierarchical control ubiquituos in industry

Aims

- Want a formal framework that guarantees "proper interaction" of control layers to minimize trial and error during design
- Hierarchical structures need not be "rigid"; may be embedded into consensus-type distributed systems, with top-level functionality temporarily assigned to a node

- 2 A Behavioural View on Control Hierarchies
- **3** A Specific Scenario
- 4 A Few Essentials of Dioid (Tropical) Algebras
- 5 Specific Scenario Revisited

Abstraction and Refinement

Motivation

- Have been investigated in different scenarios
- Behavioural point of view allows conceptionally (and notationally) simple explanation of main ingredients

Dynamical system with input/output structure

$$\Sigma = \left(T, U \times Y, \mathfrak{B} \subseteq (U \times Y)^T\right)$$

Abstractions and refinements:

- $\Sigma_a = (T, U \times Y, \mathfrak{B}_a)$ is an abstraction of Σ if $\mathfrak{B} \subseteq \mathfrak{B}_a$
- $\Sigma_r = (T, U \times Y, \mathfrak{B}_r)$ is a refinement of Σ if $\mathfrak{B}_r \subset \mathfrak{B}$

Interpretation: abstraction (refinement) corresponds to adding (removing) uncertainty

Abstraction and Refinement

- Have been investigated in different scenarios
- Behavioural point of view allows conceptionally (and notationally) simple explanation of main ingredients

Dynamical system with input/output structure:

$$u(t) \in U \longrightarrow t \in T$$

$$y(t) \in Y \longrightarrow$$

$$\Sigma = \left(T, U \times Y, \mathfrak{B} \subseteq (U \times Y)^T\right)$$

Abstraction and Refinement

- Have been investigated in different scenarios
- Behavioural point of view allows conceptionally (and notationally) simple explanation of main ingredients

Dynamical system with input/output structure:

$$u(t) \in U$$

$$t \in T$$

$$y(t) \in Y$$

$$\Sigma = \left(T, U \times Y, \mathfrak{B} \subseteq (U \times Y)^T\right)$$

Abstractions and refinements:

- $\Sigma_a = (T, U \times Y, \mathfrak{B}_a)$ is an abstraction of Σ if $\mathfrak{B} \subseteq \mathfrak{B}_a$
- $\Sigma_r = (T, U \times Y, \mathfrak{B}_r)$ is a refinement of Σ if $\mathfrak{B}_r \subseteq \mathfrak{B}$

Abstraction and Refinement

- Have been investigated in different scenarios
- Behavioural point of view allows conceptionally (and notationally) simple explanation of main ingredients

Dynamical system with input/output structure:

$$u(t) \in U$$

$$t \in T$$

$$y(t) \in Y$$

Motivation

$$\Sigma = \left(T, U \times Y, \mathfrak{B} \subseteq (U \times Y)^T\right)$$

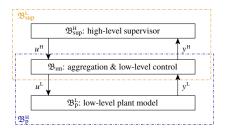
Abstractions and refinements:

- $\Sigma_a = (T, U \times Y, \mathfrak{B}_a)$ is an abstraction of Σ if $\mathfrak{B} \subseteq \mathfrak{B}_a$
- $\Sigma_r = (T, U \times Y, \mathfrak{B}_r)$ is a refinement of Σ if $\mathfrak{B}_r \subseteq \mathfrak{B}$

Interpretation: abstraction (refinement) corresponds to adding (removing) uncertainty

Generic Two-Level Control Structure

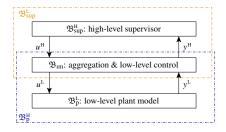
Motivation



... can be extended to arbitrary number of control layers ...

- Low-level signal space: $W_{\scriptscriptstyle L} = U_{\scriptscriptstyle L} \times Y_{\scriptscriptstyle L}$
- Low-level process model: \mathfrak{B}_{p}^{L} ... behaviour on W_{L} .
- Inclusion-type specification: $\mathfrak{B}_{\text{spec}}^{\text{L}}$... defined on W_{L} .
- High-level signal space: $W_{\rm H} = U_{\rm H} \times Y_{\rm H}$.
- High-level supervisor: 𝔻^H_{sup} ... behaviour on W_H.
- Low-level control: \mathfrak{B}_{1m} ... behaviour on $W_{\text{H}} \times W_{\text{L}}$.

Generic Two-Level Control Structure



... can be extended to arbitrary number of control layers ...

- Low-level signal space: $W_{\scriptscriptstyle L} = U_{\scriptscriptstyle L} \times Y_{\scriptscriptstyle L}$.
- Low-level process model: $\mathfrak{B}_p^{\scriptscriptstyle L}$... behaviour on $W_{\scriptscriptstyle L}$.
- Inclusion-type specification: $\mathfrak{B}^{\scriptscriptstyle L}_{\rm spec}$... defined on $W_{\scriptscriptstyle L}$.
- High-level signal space: $W_{\text{H}} = U_{\text{H}} \times Y_{\text{H}}$.
- High-level supervisor: $\mathfrak{B}_{\text{sup}}^{\text{H}}$... behaviour on W_{H} .
- Low-level control: $\mathfrak{B}_{\mathsf{Im}}$... behaviour on $W_{\mathsf{H}} \times W_{\mathsf{L}}$.

Design Procedure

Define high-level signal space (assumed given in this talk).

Low-level control:

- Define (inclusion-type) specs B_{spec} for lower control layer intended relation between high-level and low-level signals.
- \bullet Design low-level control \mathfrak{B}_{Im} enforcing specs $\mathfrak{B}^{\text{\tiny HL}}_{\text{spec}}.$

High-level control

Synthesise $\mathfrak{B}^{\scriptscriptstyle H}_{\scriptscriptstyle \text{sup}}$ for $\mathfrak{B}^{\scriptscriptstyle H}_{\scriptscriptstyle p}=\mathfrak{B}^{\scriptscriptstyle H}_{\scriptscriptstyle \text{im}}[\mathfrak{B}^{\scriptscriptstyle L}_{\scriptscriptstyle p}].$ Can be done abstraction-based!

- Use high-level proj. $P^{H}(\mathfrak{B}_{spec}^{HL})$ of \mathfrak{B}_{spec}^{HL} as abstraction of \mathfrak{B}_{p}^{H}
- Define high-level spec. $\mathfrak{B}^{\scriptscriptstyle{\mathrm{H}}}_{\scriptscriptstyle{\mathrm{spec}}}$ such that $\mathfrak{B}^{\scriptscriptstyle{\mathrm{HL}}}_{\scriptscriptstyle{\mathrm{spec}}}[\mathfrak{B}^{\scriptscriptstyle{\mathrm{H}}}_{\scriptscriptstyle{\mathrm{spec}}}]\subseteq\mathfrak{B}^{\scriptscriptstyle{\mathrm{L}}}_{\scriptscriptstyle{\mathrm{spec}}}$
- $\bullet \ \ \text{Find high-level control} \ \mathfrak{B}^{\scriptscriptstyle H}_{\scriptscriptstyle Sup} \ \text{such that} \ P^{H}(\mathfrak{B}^{\scriptscriptstyle HL}_{\scriptscriptstyle Spec}) \cap \mathfrak{B}^{\scriptscriptstyle H}_{\scriptscriptstyle Sup} \subseteq \mathfrak{B}^{\scriptscriptstyle H}_{\scriptscriptstyle Spec}$

Design Procedure

Define high-level signal space (assumed given in this talk).

Low-level control:

- Define (inclusion-type) specs
 \$\mathbb{B}_{spec}\$ for lower control layer –
 intended relation between high-level and low-level signals.
- Design low-level control \mathfrak{B}_{im} enforcing specs $\mathfrak{B}_{\text{spec}}^{\text{\tiny HL}}.$

High-level control:

Synthesise $\mathfrak{B}^{\scriptscriptstyle H}_{sup}$ for $\mathfrak{B}^{\scriptscriptstyle H}_p=\mathfrak{B}^{\scriptscriptstyle H}_{im}[\mathfrak{B}^{\scriptscriptstyle L}_p].$ Can be done abstraction-based!

- Use high-level proj. $P^{H}(\mathfrak{B}_{spec}^{HL})$ of \mathfrak{B}_{spec}^{HL} as abstraction of \mathfrak{B}_{p}^{H} .
- ullet Define high-level spec. $\mathfrak{B}^{\scriptscriptstyle{H}}_{spec}$ such that $\mathfrak{B}^{\scriptscriptstyle{HL}}_{spec}[\mathfrak{B}^{\scriptscriptstyle{H}}_{spec}]\subseteq\mathfrak{B}^{\scriptscriptstyle{L}}_{spec}$.
- $\bullet \ \ \text{Find high-level control} \ \mathfrak{B}^{\scriptscriptstyle H}_{sup} \ \text{such that} \ P^H(\mathfrak{B}^{\scriptscriptstyle HL}_{spec}) \cap \mathfrak{B}^{\scriptscriptstyle H}_{sup} \subseteq \mathfrak{B}^{\scriptscriptstyle H}_{spec} \, .$

Design Procedure

Define high-level signal space (assumed given in this talk).

Low-level control:

- Define (inclusion-type) specs
 \$\mathbb{B}_{spec}\$ for lower control layer –
 intended relation between high-level and low-level signals.
- Design low-level control \mathfrak{B}_{im} enforcing specs $\mathfrak{B}_{\text{spec}}^{\text{\tiny HL}}.$

High-level control:

Synthesise $\mathfrak{B}^{\scriptscriptstyle H}_{sup}$ for $\mathfrak{B}^{\scriptscriptstyle H}_p=\mathfrak{B}^{\scriptscriptstyle H}_{im}[\mathfrak{B}^{\scriptscriptstyle L}_p].$ Can be done abstraction-based!

- Use high-level proj. $P^{H}(\mathfrak{B}_{spec}^{HL})$ of \mathfrak{B}_{spec}^{HL} as abstraction of \mathfrak{B}_{p}^{H} .
- ullet Define high-level spec. $\mathfrak{B}^{\scriptscriptstyle{H}}_{spec}$ such that $\mathfrak{B}^{\scriptscriptstyle{HL}}_{spec}[\mathfrak{B}^{\scriptscriptstyle{H}}_{spec}]\subseteq\mathfrak{B}^{\scriptscriptstyle{L}}_{spec}$.
- $\bullet \ \ \text{Find high-level control} \ \mathfrak{B}^{\scriptscriptstyle H}_{sup} \ \text{such that} \ P^H(\mathfrak{B}^{\scriptscriptstyle HL}_{spec}) \cap \mathfrak{B}^{\scriptscriptstyle H}_{sup} \subseteq \mathfrak{B}^{\scriptscriptstyle H}_{spec} \, .$

$$\Longrightarrow \mathfrak{B}^{L}_{p} \cap \underbrace{\mathfrak{B}^{L}_{smp}[\mathfrak{B}^{H}_{sup}]}_{\mathfrak{B}^{L}_{sup}} \subseteq \mathfrak{B}^{L}_{spec}$$

Where Can Things Go Wrong?

Low-level specification $\mathfrak{B}^{\text{\tiny HL}}_{spec}$ too demanding:

- I.e., we cannot find appropriate low-level control.
- Need to relax low-level specifications and replace $\mathfrak{B}^{\text{HL}}_{\text{spec}}$ by an abstraction $\mathfrak{B}^{\text{HL}}_{\text{spec},a}$ such that $\mathfrak{B}^{\text{HL}}_{\text{spec}} \subseteq \mathfrak{B}^{\text{HL}}_{\text{spec},a}$.

Illustration: robot moving in a restricted area

$$\dot{x}_1(t) = v(t) \cos \theta(t)
\dot{x}_2(t) = v(t) \sin \theta(t)
\dot{\theta}(t) = u_1(t)
\dot{v}(t) = u_2(t)$$

```
u^{L} = (u_1, u_2) low-level inputs y^{L} = (x_1, x_2) low-level outputs u^{H} \in \{\text{go up}, \ldots\} high-level input v^{H} = \text{quant}(x_1, x_2) high-level outputs.
```

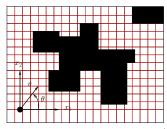

Low-level specification $\mathfrak{B}^{\text{\tiny HL}}_{\text{spec}}$ too demanding:

• I.e., we cannot find appropriate low-level control.

- Need to relax low-level specifications and replace $\mathfrak{B}^{\text{HL}}_{\text{spec}}$ by an abstraction $\mathfrak{B}^{\text{HL}}_{\text{spec},a}$ such that $\mathfrak{B}^{\text{HL}}_{\text{spec}}\subseteq\mathfrak{B}^{\text{HL}}_{\text{spec},a}$.
- Illustration: robot moving in a restricted area:

$$\begin{array}{lcl} \dot{x}_1(t) & = & v(t)\cos\theta(t) \\ \dot{x}_2(t) & = & v(t)\sin\theta(t) \\ \dot{\theta}(t) & = & u_1(t) \\ \dot{v}(t) & = & u_2(t) \end{array}$$

 $u^{L} = (u_1, u_2)$ low-level inputs $y^{L} = (x_1, x_2)$ low-level outputs $u^{H} \in \{\text{go up}, \ldots\}$ high-level input $y^{H} = \text{quant}(x_1, x_2)$ high-lev. outp.



Dioid Algebras

Where Can Things Go Wrong?

Motivation

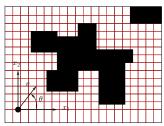
Low-level specification $\mathfrak{B}^{\scriptscriptstyle HL}_{spec}$ too demanding:

- I.e., we cannot find appropriate low-level control.
- Need to relax low-level specifications and replace $\mathfrak{B}^{\text{HL}}_{\text{spec}}$ by an abstraction $\mathfrak{B}^{\text{HL}}_{\text{spec},a}$ such that $\mathfrak{B}^{\text{HL}}_{\text{spec}} \subseteq \mathfrak{B}^{\text{HL}}_{\text{spec},a}$.

Illustration: robot moving in a restricted area:

$$\dot{x}_1(t) = v(t) \cos \theta(t)
\dot{x}_2(t) = v(t) \sin \theta(t)
\dot{\theta}(t) = u_1(t)
\dot{v}(t) = u_2(t)$$

 $u^{L} = (u_1, u_2)$ low-level inputs $y^{L} = (x_1, x_2)$ low-level outputs $u^{H} \in \{\text{go up}, \ldots\}$ high-level input $y^{H} = \text{quant}(x_1, x_2)$ high-lev. outp.



Ex.: "go right" \rightarrow is too demanding.

What Else Can Go Wrong?

Low-level specification $\mathfrak{B}^{\scriptscriptstyle HL}_{spec}$ too coarse:

- $P^{H}(\mathfrak{B}_{spec}^{HL})$ serves as abstraction of plant under low-level control.
- We cannot find appropriate high-level control.
- $\bullet \ \ \text{Need to refine low-level specifications by } \mathfrak{B}^{\text{\tiny HL}}_{spec,r} \subseteq \mathfrak{B}^{\text{\tiny HL}}_{spec}.$

Example:

Recap

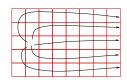
- choice of low-level specs $\mathfrak{B}_{\text{spec}}^{\text{\tiny HL}}$ depends on engineering intuition
- often involves trade-off between control layers
- key advantage: solution of low- & high-level control problems will provide a solution for the overall problem (guaranteed!)

What Else Can Go Wrong?

Low-level specification $\mathfrak{B}^{\scriptscriptstyle HL}_{spec}$ too coarse:

- $P^{H}(\mathfrak{B}_{spec}^{HL})$ serves as abstraction of plant under low-level control.
- We cannot find appropriate high-level control.
- $\bullet \ \ \text{Need to refine low-level specifications by } \mathfrak{B}^{\text{\tiny HL}}_{spec,r} \subseteq \mathfrak{B}^{\text{\tiny HL}}_{spec}.$

Example: "go right" →



Recap

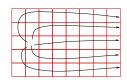
- ullet choice of low-level specs ${\mathfrak B}^{\scriptscriptstyle{HL}}_{\scriptscriptstyle{Spec}}$ depends on engineering intuition
- often involves trade-off between control layers
- key advantage: solution of low- & high-level control problems will provide a solution for the overall problem (guaranteed!)

What Else Can Go Wrong?

Low-level specification \mathfrak{B}_{spec}^{HL} too coarse:

- ullet $P^H(\mathfrak{B}^{\scriptscriptstyle{HL}}_{spec})$ serves as abstraction of plant under low-level control.
- We cannot find appropriate high-level control.
- $\bullet \ \ \text{Need to refine low-level specifications by } \mathfrak{B}^{\text{\tiny HL}}_{spec,r} \subseteq \mathfrak{B}^{\text{\tiny HL}}_{spec}.$

Example: "go right" →



Recap:

- ullet choice of low-level specs $\mathfrak{B}^{\scriptscriptstyle HL}_{spec}$ depends on engineering intuition
- often involves trade-off between control layers
- key advantage: solution of low- & high-level control problems will provide a solution for the overall problem (guaranteed!)

Motivation

- 2 A Behavioural View on Control Hierarchies
- A Specific Scenario
- 4 A Few Essentials of Dioid (Tropical) Algebras
- **5** Specific Scenario Revisited

Specific Scenario

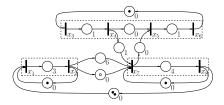
- top layer decides on timing (not ordering!) of discrete events
- synthesis based on TEG abstraction of plant + low-level control
- TEG (Timed Event Graph) ... specific timed Petri net

$$x_7(k) = \max\{x_4(k) + 1, x_2(k) + 6, x_2(k+1), x_8(k-1)\}$$

Specific Scenario

- top layer decides on timing (not ordering!) of discrete events
- synthesis based on TEG abstraction of plant + low-level control
- TEG (Timed Event Graph) ... specific timed Petri net

Example:



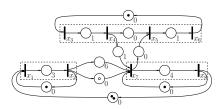
$$x_7(k) = \max\{x_4(k) + 1, x_2(k) + 6, x_2(k+1), x_8(k-1)\}\$$

time relations become linear in certain dioid (tropical) algebrass

Specific Scenario

- top layer decides on timing (not ordering!) of discrete events
- synthesis based on TEG abstraction of plant + low-level control
- TEG (Timed Event Graph) ... specific timed Petri net

Example:



- want to compute earliest times of k-th occurrences of events
- doable, but time relations (non-benevolently) non-linear

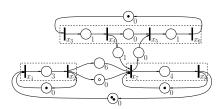
$$x_7(k) = \max\{x_4(k) + 1, x_2(k) + 6, x_2(k+1), x_8(k-1)\}\$$

time relations become linear in certain dioid (tropical) algebras

- top layer decides on timing (not ordering!) of discrete events
- synthesis based on TEG abstraction of plant + low-level control
- TEG (Timed Event Graph) . . . specific timed Petri net

Example:

Motivation



- want to compute earliest times of k-th occurrences of events
- doable, but time relations (non-benevolently) non-linear

$$x_7(k) = \max\{x_4(k) + 1, x_2(k) + 6, x_2(k+1), x_8(k-1)\}\$$

time relations become linear in certain dioid (tropical) algebras . . .

- A Behavioural View on Control Hierarchies
- A Specific Scenario
- A Few Essentials of Dioid (Tropical) Algebras

A dioid is an algebraic structure with two binary operations \oplus

- ("addition") and \otimes ("multiplication") defined on a set \mathcal{D} , such that \bullet \oplus is associative, commutative \bullet idempotent ($a \oplus a = a \ \forall a \in \mathcal{D}$)
 - ⊗ is associative and is distributive w.r.t. ⊕
 - zero element ε , unit element e
 - ε is absorbing for \otimes , i.e., $\varepsilon \otimes a = a \otimes \varepsilon = \varepsilon \ \forall a \in \mathcal{D}$

Remarks

- a dioid is complete if it is closed for infinite sums and distributes over infinite sums
- dioids are equipped with a natural order: $a \oplus b = a \Leftrightarrow a \succeq b$
- addition and multiplication can be easily extended to matrices

Dioid Algebras

A dioid is an algebraic structure with two binary operations \oplus ("addition") and \otimes ("multiplication") defined on a set \mathcal{D} , such that

- ullet \oplus is associative, commutative & idempotent $(a \oplus a = a \ \forall a \in \mathcal{D})$
- ullet \otimes is associative and is distributive w.r.t. \oplus
- zero element ε, unit element e
- ε is absorbing for \otimes , i.e., $\varepsilon \otimes a = a \otimes \varepsilon = \varepsilon \ \forall a \in \mathcal{D}$

Remarks

- a dioid is complete if it is closed for infinite sums and distributes over infinite sums
- dioids are equipped with a natural order: $a \oplus b = a \Leftrightarrow a \succeq b$
- addition and multiplication can be easily extended to matrices

Dioid Algebras

00000

Example: The Max-Plus Algebra

Defined on
$$\overline{\mathbb{Z}}=\mathbb{Z}\cup\{-\infty\}\cup\{+\infty\}$$
 resp. $\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty\}\cup\{+\infty\}$:

- addition: $a \oplus b := \max(a, b)$, zero element: $\varepsilon := -\infty$
- multiplication: $a \otimes b := a + b$, unit element: e := 0

Time relations for TEGs described by linear implicit difference eqns.

For our example

$$x_7(k) = 1 \otimes x_4(k) \oplus 6 \otimes x_2(k) \oplus x_2(k+1) \oplus x_8(k-1)$$

Dioid Algebras

Example: The Max-Plus Algebra

Defined on
$$\overline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty\} \cup \{+\infty\}$$
 resp. $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$:

- addition: $a \oplus b := \max(a, b)$, zero element: $\varepsilon := -\infty$
- multiplication: $a \otimes b := a + b$, unit element: e := 0

Time relations for TEGs described by linear implicit difference eqns.

For our example

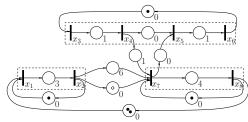
$$x_7(k) = 1 \otimes x_4(k) \oplus 6 \otimes x_2(k) \oplus x_2(k+1) \oplus x_8(k-1)$$

Defined on $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty\} \cup \{+\infty\}$ resp. $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$:

- addition: $a \oplus b := \max(a, b)$, zero element: $\varepsilon := -\infty$
- multiplication: $a \otimes b := a + b$, unit element: e := 0

Time relations for TEGs described by linear implicit difference eqns.

For our example



$$x_7(k) = 1 \otimes x_4(k) \oplus 6 \otimes x_2(k) \oplus x_2(k+1) \oplus x_8(k-1)$$

- $\mathcal{M}_{in}^{ax} \llbracket \gamma, \delta \rrbracket \dots$ a quotient dioid in the set of 2-dim. formal power series (in γ , δ), with Boolean coefficients and integer exponents
- interpretation of monomial $\gamma^k \delta^t$:
 - kth occurrence of event is at time t at the earlies
 - equivalently: at time t, event has occurred at most k times
 - ightarrow have to consider "south-east cones" (instead of points) in $\overline{\mathbb{Z}}^2$

Example: $s = \gamma^1 \delta^1 \oplus \gamma^3 \delta^2 \oplus \gamma^4 \delta^5$

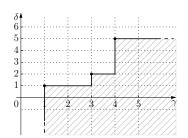
- $\mathcal{M}_{in}^{ax} \llbracket \gamma, \delta \rrbracket \dots$ a quotient dioid in the set of 2-dim. formal power series (in γ , δ), with Boolean coefficients and integer exponents
- interpretation of monomial $\gamma^k \delta^t$:
 - kth occurrence of event is at time t at the earliest
 - equivalently: at time t, event has occurred at most k times
 - ightharpoonup have to consider "south-east cones" (instead of points) in $\overline{\mathbb{Z}}^2$

Example: $s = \gamma^1 \delta^1 \oplus \gamma^3 \delta^2 \oplus \gamma^4 \delta^5$

The Dioid $\mathcal{M}_{\mathit{in}}^{\mathit{ax}} \left[\!\!\left[\gamma, \delta ight]\!\!\right]$

- $\mathcal{M}_{in}^{ax} [\![\gamma, \delta]\!] \dots$ a quotient dioid in the set of 2-dim. formal power series (in γ, δ), with Boolean coefficients and integer exponents
- interpretation of monomial $\gamma^k \delta^t$:
 - kth occurrence of event is at time t at the earliest
 - equivalently: at time t, event has occurred at most k times
 - ightharpoonup have to consider "south-east cones" (instead of points) in $\overline{\mathbb{Z}}^2$

Example:
$$s = \gamma^1 \delta^1 \oplus \gamma^3 \delta^2 \oplus \gamma^4 \delta^5$$



Properties:

- $\bullet \ \gamma^k \delta^t \oplus \gamma^l \delta^t = \gamma^{\min(k,l)} \delta^t$

- Zero element: $\varepsilon = \gamma^{+\infty} \delta^{-\infty}$
- Unit element: $e = \gamma^0 \delta^0$
- Interpretation of partial order: inclusion in \mathbb{Z}^2

The Dioid $\mathcal{M}_{in}^{ax} \llbracket \gamma, \delta rbracket$

- $\mathcal{M}_{in}^{ax} [\gamma, \delta] \dots$ a quotient dioid in the set of 2-dim. formal power series (in γ , δ), with Boolean coefficients and integer exponents
- interpretation of monomial $\gamma^k \delta^t$:
 - kth occurrence of event is at time t at the earliest
 - equivalently: at time t, event has occurred at most k times
 - ightharpoonup have to consider "south-east cones" (instead of points) in $\overline{\mathbb{Z}}^2$

Example: $s = \gamma^1 \delta^1 \oplus \gamma^3 \delta^2 \oplus \gamma^4 \delta^5$

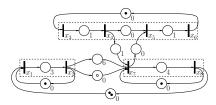


Properties:

- $\bullet \ \gamma^k \delta^t \oplus \gamma^l \delta^t = \gamma^{\min(k,l)} \delta^t$
- $\bullet \ \gamma^{k} \delta^{t} \otimes \gamma^{l} \delta^{\tau} = \gamma^{(k+l)} \delta^{(t+\tau)}$
- Zero element: $\varepsilon = \gamma^{+\infty} \delta^{-\infty}$
- Unit element: $e = \gamma^0 \delta^0$
- interpretation of partial order: inclusion in $\overline{\mathbb{Z}}^2$

Time relations for TEGs become linear algebraic eqns. in $\mathcal{M}_{in}^{ax} [\gamma, \delta]$

For our example



$$\textit{x}_7 = \delta^1 \gamma^0 \textit{x}_4 \oplus (\delta^6 \gamma^0 \oplus \delta^0 \gamma^{-1}) \textit{x}_2 \oplus \delta^0 \gamma^1 \textit{x}_8$$

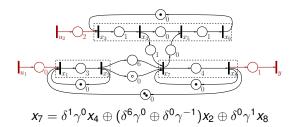
In general, with input & output trans. (triggered resp. seen externally):

$$X = AX \oplus BU$$
 $V = CX$

Time relations for TEGs become linear algebraic eqns. in $\mathcal{M}_{in}^{ax} [\gamma, \delta]$

For our example

Motivation



In general, with input & output trans. (triggered resp. seen externally):

$$x = Ax \oplus Bu$$

 $y = Cx$

Plant:

Motivation

- state model $x = Ax \oplus Bu$, y = Cx
- ullet i/o rel. $y=CA^*Bu$, with $A^*:=igoplus_{i\in\mathbb{N}_0}A^i\dots$ Kleene star operator

Output feedback:

$$u = Ky \oplus v$$

$$\rightsquigarrow y = CA^*BKy \oplus CA^*Bv$$

$$y = \underbrace{(CA^*BK)^*CA^*B}_{H_{cl}}v$$

Aim: just-in-time policy

find greatest K s.t. $H_{ref} \succeq H_{cl}$, with

- H_{ref} a given reference model
- "greatest" and " \succeq " in the sense of natural order in $\mathcal{M}_{in}^{ax} \llbracket \gamma, \delta \rrbracket$

Solution:

desired feedback K can be obtained using "residuation theory":

$$K_{opt} = (CA^*B) \delta H_{ref} \phi (CA^*B)$$

Control in the Dioid $\mathcal{M}_{\mathit{in}}^{\mathit{ax}} \, \llbracket \gamma, \delta rbracket$

Plant:

- state model $x = Ax \oplus Bu$, y = Cx
- ullet i/o rel. $y=CA^*Bu$, with $A^*:=igoplus_{i\in\mathbb{N}_0}A^i\dots$ Kleene star operator

Output feedback:

$$u = Ky \oplus v$$

$$\rightsquigarrow y = CA^*BKy \oplus CA^*Bv$$

$$y = \underbrace{(CA^*BK)^*CA^*B}_{H_{cl}}v$$

Aim: just-in-time policy

find greatest K s.t. $H_{ref} \succeq H_{cl}$, with

Dioid Algebras

00000

- ullet H_{ref} a given reference model
- "greatest" and "∑" in the sense of natural order in
 M_{in}^{ax} [γ, δ]

Solution

desired feedback K can be obtained using "residuation theory"

$$K_{opt} = (CA^*B) \delta H_{ref} \delta (CA^*B)$$

Control in the Dioid $\mathcal{M}_{\mathit{in}}^{\mathit{ax}} \left[\!\!\left[\gamma, \delta \right]\!\!\right]$

Plant:

- state model $x = Ax \oplus Bu$, y = Cx
- ullet i/o rel. $y=CA^*Bu$, with $A^*:=igoplus_{i\in\mathbb{N}_0}A^i\dots$ Kleene star operator

Output feedback:

$$u = Ky \oplus v$$

$$\rightsquigarrow y = CA^*BKy \oplus CA^*Bv$$

$$y = \underbrace{(CA^*BK)^*CA^*B}_{H_{cl}}v$$

Aim: just-in-time policy

find greatest K s.t. $H_{ref} \succeq H_{cl}$, with

- *H*_{ref} a given reference model
- "greatest" and "≿" in the sense of natural order in M_{in}^{ax} [γ, δ]

Solution

desired feedback K can be obtained using "residuation theory"

$$K_{opt} = (CA^*B) \delta H_{ref} \emptyset (CA^*B)$$

Control in the Dioid $\mathcal{M}_{\mathit{in}}^{\mathit{ax}} \, \llbracket \gamma, \delta rbracket$

Plant:

- state model $x = Ax \oplus Bu$, y = Cx
- ullet i/o rel. $y=CA^*Bu$, with $A^*:=igoplus_{i\in\mathbb{N}_0}A^i\dots$ Kleene star operator

Output feedback:

$$u = Ky \oplus v$$

$$\rightsquigarrow y = CA^*BKy \oplus CA^*Bv$$

$$y = \underbrace{(CA^*BK)^*CA^*B}_{H_{cl}}v$$

Aim: just-in-time policy

find greatest K s.t. $H_{ref} \succeq H_{cl}$, with

- *H_{ref}* a given reference model
- "greatest" and "≿" in the sense of natural order in M_{in}^{ax} [γ, δ]

Solution:

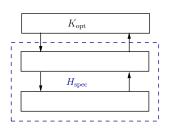
desired feedback K can be obtained using "residuation theory":

$$K_{opt} = (CA^*B) \Diamond H_{ref} \not \circ (CA^*B)$$

Outline

Motivation

- Motivation
- 2 A Behavioural View on Control Hierarchies
- A Specific Scenario
- A Few Essentials of Dioid (Tropical) Algebras
- 5 Specific Scenario Revisited



• K_{opt} ... greatest feedback K s.t.

$$(H_{\rm spec}K)^*H_{\rm spec} \leq G_{\rm spec}$$

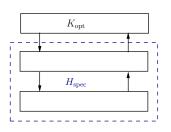
for a given overall spec. G_{spec}

 H_{spec} ... low-level spec., i.e., abstraction for plant under low-level control

Result

Motivation

- Given overall specification G_{spec}
- Given low-level specifications H_{spec_1} , H_{spec_2} , with $H_{\text{spec}_1} \leq H_{\text{spec}_2}$ (and some "natural" restrictions in place)
- ullet Compute corresponding optimal feedback control $K_{\mathrm{opt_1}}$, $K_{\mathrm{opt_2}}$
- Can show that K_{opt₁} ≥ K_{opt₂} ("stricter low-level specs allow for more relaxed high-level control")



• K_{opt} ... greatest feedback K s.t.

$$(H_{\rm spec}K)^*H_{\rm spec} \preceq G_{\rm spec}$$

for a given overall spec. $G_{\rm spec}$

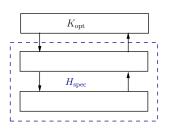
 H_{spec} ... low-level spec., i.e., abstraction for plant under low-level control

Result:

Motivation

- Given overall specification G_{spec}
- Given low-level specifications H_{spec_1} , H_{spec_2} , with $H_{\text{spec}_1} \leq H_{\text{spec}_2}$ (and some "natural" restrictions in place)
- Compute corresponding optimal feedback control K_{opt,}, K_{opt,}
- Can show that K_{opt₁} ≥ K_{opt₂} ("stricter low-level specs allow for more relaxed high-level control")

Tradeoff Between Control Layers



• K_{opt} ... greatest feedback K s.t.

$$(H_{\operatorname{spec}}K)^*H_{\operatorname{spec}} \preceq G_{\operatorname{spec}}$$

for a given overall spec. $G_{\rm spec}$

 H_{spec} ... low-level spec., i.e., abstraction for plant under low-level control

Result:

- Given overall specification G_{spec}
- Given low-level specifications H_{spec_1} , H_{spec_2} , with $H_{\text{spec}_1} \leq H_{\text{spec}_2}$ (and some "natural" restrictions in place)
- Compute corresponding optimal feedback control K_{opt_1} , K_{opt_2}
- Can show that K_{opt₁} ≥ K_{opt₂} ("stricter low-level specs allow for more relaxed high-level control")

Conclusions

- Interpreted trade-off between layers in a hierarchical control system from a behavioural point of view
- Formally investigated this trade-off for a specific scenario where top layer is responsible for timing of discrete events
- ullet Resulting setup conveniently described in the dioid $\mathcal{M}_{\mathit{in}}^{\mathit{ax}}\left[\!\left[\gamma,\delta\right]\!\right]$
- Verified that stricter low-level specs indeed allow for more relaxed high-level control

More Details

- [1] J. Willems: Models for dynamics, in *Dynamics Reported*, vol. 2, 1989, pp. 172–269.
- [2] J. Raisch and T. Moor: Hierarchical Hybrid Control of a Multiproduct Batch Plant, Lecture Notes in Control and Information Sciences. Springer-Verlag, 2005, vol. 322, p. 199–216.
- [3] F. Baccelli, G. Cohen, G.J. Olsder, and J.-P. Quadrat: Synchronization and Linearity – An Algebra for Discrete Event Systems. Wiley, 1992.
- [4] B. Cottenceau, L. Hardouin, J.-L. Boimond, and J.-L. Ferrier: Model reference control for timed event graphs in dioids, *Automatica*, vol. 37, no. 9, pp. 1451–1458, 2001.
- [5] M. Lhommeau, L. Hardouin, R. Santos Mendes and B. Cottenceau: On the model reference control for max-plus linear systems. *Proc. 44th IEEE CDC*, pp. 7799–7803, 2005.

More Details (ctd.)

- [6] X. David-Henriet, J. Raisch, and L. Hardouin: Consistent control hierarchies with top layers represented by timed event graphs. Proc. MMAR 2012 – 17th Int. Conf. on Methods and Models in Automation and Robotics, 2012.
- [7] T. Brunsch, L. Hardouin, C. A. Maia and J. Raisch. Duality and interval analysis over idempotent semirings, *Linear Algebra and its Applications*, vol. 437, no. 10, pp. 2436–2454, 2012.
- [8] T. Brunsch, J. Raisch, L. Hardouin and O. Boutin. Discrete-Event Systems in a Dioid Framework: Modeling and Analysis, *Lecture Notes in Control and Information Sciences*, vol. 433, pp. 431–450, Springer-Verlag, 2012.
- [9] L. Hardouin, O. Boutin, B. Cottenceau, T. Brunsch, and J. Raisch. Discrete-Event Systems in a Dioid Framework: Control Theory, Lecture Notes in Control and Information Sciences, vol. 433, pp. 451–469, Springer-Verlag, 2012.