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Motivation and Aims

@ Want to address large-scale/complex control problems

@ Too many degrees of freedom for monolithic controller design

@ Need to impose structure to reduce degrees of freedom

@ Hierarchical control architecture particularly intuitive

@ Heuristically designed hierarchical control ubiquituos in industry

@ Want a formal framework that guarantees “proper interaction” of
control layers to minimize trial and error during design

@ Hierarchical structures need not be “rigid”; may be embedded
into consensus-type distributed systems, with top-level
functionality temporarily assigned to a node
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Abstraction and Refinement

@ Have been investigated in different scenarios

@ Behavioural point of view allows conceptionally (and notationally)
simple explanation of main ingredients

Dynamical system with input/output structure:

teT = (T.UxY,BC(UxY))

Abstractions and refinements:

@ ¥Y,=(T,Ux Y,B,)is an abstraction of X if B C B,
@ Y, =(T,UxY,B,)is arefinement of  if B, C B

Interpretation: abstraction (refinement) corresponds to adding
(removing) uncertainty
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Generic Two-Level Control Structure

l Bip: high-level supervisor ‘

o] i

l B,m: aggregation & low-level control ‘

] E

l Bj: low-level plant model ‘

...can be extended to arbitrary number of control layers ...

Low-level signal space: W, = U, x Y,.

Low-level process model: 955 .. . behaviour on W,.
Inclusion-type specification: By . . . defined on W,.
High-level signal space: W, = U; x Y.

High-level supervisor: By, . .. behaviour on W,.
Low-level control: B, ...behaviour on W, x W,.
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Design Procedure

Define high-level signal space (assumed given in this talk).

Low-level control:

@ Define (inclusion-type) specs B for lower control layer —
intended relation between high-level and low-level signals.

@ Design low-level control 98, enforcing specs Bipec.
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Design Procedure

Define high-level signal space (assumed given in this talk).

Low-level control:

@ Define (inclusion-type) specs B for lower control layer —
intended relation between high-level and low-level signals.

@ Design low-level control 98, enforcing specs Bipec.

High-level control:

Synthesise B, for Bj = Bin[B;]. Can be done abstraction-based!

@ Use high-level proj. PH(Bi.) of BiL.. as abstraction of B4,
@ Define high-level spec. B, such that Bipec[Bipec]  Bipec-
@ Find high-level control $BY,, such that PH(Bik..) N B, C Bl .

- %; N Bim [%:{up] - gBEpec
——
Blup
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Where Can Things Go Wrong?

Low-level specification B;.. too demanding:

@ |l.e., we cannot find appropriate low-level control.

@ Need to relax low-level specifications and replace B by an
abstraction Biec . such that Bifee C Bieca-

lllustration: robot moving in a restricted area:

xi(t) = v(t) cosé(t)

xo(t) = v(t) sind(f) -

oty = u(t)

v(t) = wl(t)
u" = (uy, up) low-level inputs [T
y* = (X1, x2) low-level outputs o
u" € {go up, ...} high-level input Ex.: “go right” ~ e
y" = quant(xi, x2) high-lev. outp. is oo demanding.
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Example:
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What Else Can Go Wrong?

Low-level specification B;.. too coarse:

@ PH(BI..) serves as abstraction of plant under low-level control.
@ We cannot find appropriate high-level control.
@ Need to refine low-level specifications by Bifecr C Bipec.

Example: “go right” ~~ T T

@ choice of low-level specs B depends on engineering intuition
@ often involves trade-off between control layers

@ key advantage: solution of low- & high-level control problems will
provide a solution for the overall problem (guaranteed!)
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Specific Scenario

@ top layer decides on timing (not ordering!) of discrete events
@ synthesis based on TEG abstraction of plant + low-level control
@ TEG (Timed Event Graph) ... specific timed Petri net

Example:

@ want to compute earliest
times of k-th occurrences
of events

@ doable, but time relations
(non-benevolently)
non-linear

x7(k) = max{xs(k) + 1, x2(K) + 6, x2(k + 1), xs(k — 1)}

time relations become linear in certain dioid (tropical) algebras ... J




Dioid Algebras

Outline

© A Few Essentials of Dioid (Tropical) Algebras



Dioid Algebras
©0000

Dioid Algebras

A dioid is an algebraic structure with two binary operations &
(“addition”) and ® (“multiplication”) defined on a set D, such that
@ @ is associative, commutative & idempotent (ad® a= aVva € D)
@ ® is associative and is distributive w.r.t. ®
@ zero element ¢, unit element e
@ cis absorbing for ®, i.e.,ce®a=a®e=cVaecD
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Dioid Algebras

A dioid is an algebraic structure with two binary operations &
(“addition”) and ® (“multiplication”) defined on a set D, such that

@ @ is associative, commutative & idempotent (ad® a= aVva € D)
@ ® is associative and is distributive w.r.t. ®

@ zero element ¢, unit element e

@ cis absorbing for ®, i.e.,ce®a=a®e=cVaecD

@ a dioid is complete if it is closed for infinite sums and ®
distributes over infinite sums

@ dioids are equipped with a natural order: a@b=a< a> b
@ addition and multiplication can be easiliy extended to matrices




Dioid Algebras
0®000

Example: The Max-Plus Algebra

Defined on Z = Z U {—oc0} U {+o0} resp. R = RU {—o0} U {+00}:
@ addition: a® b := max(a, b), zero element: € := —co
@ multiplication: a® b := a+ b, unit element: e := 0




Dioid Algebras
0®000

Example: The Max-Plus Algebra

Defined on Z = Z U {—oc0} U {+o0} resp. R = RU {—o0} U {+00}:
@ addition: a® b := max(a, b), zero element: € := —co
@ multiplication: a® b := a+ b, unit element: e := 0

Time relations for TEGs described by linear implicit difference eqgns.



Dioid Algebras
0®000

Example: The Max-Plus Algebra

Defined on Z = Z U {—oc0} U {+o0} resp. R = RU {—o0} U {+00}:
@ addition: a® b := max(a, b), zero element: € := —co
@ multiplication: a® b := a+ b, unit element: e := 0

Time relations for TEGs described by linear implicit difference eqgns.

For our example

X7(k) = 1® Xa(k) ®6 @ xo(k) ® x2(k+1) & xg(k — 1)



Dioid Algebras
00®00

The Dioid M2 [, 5]

@ M2[~,4] ...aquotient dioid in the set of 2-dim. formal power
series (in v, 8), with Boolean coefficients and integer exponents




Dioid Algebras
00®00

The Dioid M2 [, 5]

@ M2[~,4] ...aquotient dioid in the set of 2-dim. formal power
series (in v, 8), with Boolean coefficients and integer exponents
@ interpretation of monomial 7§t

- kth occurrence of event is at time t at the earliest
- equivalently: at time ¢, event has occurred at most k times

~+ have to consider “south-east cones” (instead of points) in A




Dioid Algebras
00®00

The Dioid M2 [, 5]

@ M2[~,4] ...aquotient dioid in the set of 2-dim. formal power
series (in v, 8), with Boolean coefficients and integer exponents
@ interpretation of monomial 7§t

- kth occurrence of event is at time t at the earliest
- equivalently: at time ¢, event has occurred at most k times

~+ have to consider “south-east cones” (instead of points) in A

Example: s = 416" @~352 @ 448°
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Dioid Algebras
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The Dioid M2 [, 5]

@ M2[~,4] ...aquotient dioid in the set of 2-dim. formal power
series (in v, 8), with Boolean coefficients and integer exponents

@ interpretation of monomial 7§t

- kth occurrence of event is at time t at the earliest
- equivalently: at time ¢, event has occurred at most k times

~+ have to consider “south-east cones” (instead of points) in A

Py ,yk(st D 7/51 _ ,ymin(k,l)at
A Y ,yk(;t D ,Yk(;r — ,Yk(;max(t,-r)
""" A Y ,.yké‘t ® ,ylé‘ﬂr — ’Y(k+l)6(t+T)
77777 @ Zero element: e = yt>0§=°
. @ Unit element: e = 4060
Z @ interpretation of partial
order: inclusion in Z°

N W OO
— T T T

o

| 5
Sl

=

(348




Dioid Algebras
000®0

The Dioid M [, d] ctd.

Time relations for TEGs become linear algebraic eqns. in M2¢ [+, 0] J

For our example

X7 =06"7"%4 & (6°7° @ 6% )Xo @ 609" xg
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The Dioid M [, d] ctd.

Time relations for TEGs become linear algebraic eqns. in M2 [v, d] J

For our example

X7 = 5170X4 D (5670 D 507—1))(2 o 50’}/1 Xg

In general, with input & output trans. (triggered resp. seen externally):

X = Ax® Bu
y = Cx
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@ state model x = Ax ¢ Bu, y = Cx
@ i/orel. y = CA*Bu, with A* := @, A’ ... Kleene star operator

Aim: just-in-time policy
find greatest K s.t. Hor = Hy, with

Output feedback:
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Control in the Dioid M2 [+, ]

@ state model x = Ax ¢ Bu, y = Cx
@ i/orel. y = CA*Bu, with A* := @, A’ ... Kleene star operator

Output feedback: Aim: just-in-time policy

find greatest K s.t. Hor = Hy, with
@ H,s a given reference model
@ “greatest” and “>" in the

u = Kyav
~y = CA"BKy @ CA*Bv

y = (CA'BK)"CA'Bv sense of natural order in
Hcl M%X I[’Y? 5]

desired feedback K can be obtained using “residuation theory”:

Kopt = (CA*B)§H,er ¢ (CA*B)
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Specific Scenario Revisited
°

Tradeoff Between Control Layers

| @ Kopt - -.greatest feedback K s.t.

(HspecK)*Hspec = Gspec

@ Hspec - . - low-level spec., i.e.,
abstraction for plant under
ittt low-level control

@ Given overall specification Gspec

@ Given low-level specifications Hspec,, Hspec,, With Hspec, = Hspec,
(and some “natural” restrictions in place)

@ Compute corresponding optimal feedback control Kopt, , Kopt,

@ Can show that Kopt, = Kopt, (“stricter low-level specs allow for
more relaxed high-level control”)

| I

| K

I .

| ! for a given overall spec. Ggpec
! 1 Hspec T 1

! I

I

| I

! |




Conclusions

@ Interpreted trade-off between layers in a hierarchical control
system from a behavioural point of view

@ Formally investigated this trade-off for a specific scenario where
top layer is responsible for timing of discrete events

@ Resulting setup conveniently described in the dioid M [, 6]

@ Verified that stricter low-level specs indeed allow for more
relaxed high-level control
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