Controller Design for Systems with Clock Offsets

Award # CNS-1329755 (UCLA), CNS-1329644 (CMU), CNS-1329644 (UCSD), and CNS-1329650 (UCSB)

Type: Frontier; Start Date: June 2014

Justin Peason (UCSB)

Andrew Symington (UCLA), Masashi Wakaiki, Kunihisa Okano, Joao. P. Hespanha (UCSB)

jppearson@ece.ucsb.edu, asymingt@ucla.edu, masashiwakaiki@ece.uscb.edu, kokano@ece.ucsb.edu, hespanha@ece.ucsb.edu

Background

Plant's state Network Controller Nominal sampling instant Actual sampling instant

- · Sensor and controller act on local clocks.
- Because of clock offsets between the local clocks, actual sampling instants are different from nominal ones.
- Timing errors introduce signal distortion.

How to design controllers for systems with clock offsets?

Approach

Variable clock offset \triangle appears in the **nonlinear** form $e^{A\triangle}$. (A: system matrix)

Convex over-approximation overcomes this nonlinearity:

 $e^{A\Delta}$ = (linear approximation term) + (uncertainty term)

→ Controller design via bilinear matrix inequalities

Efficiently solved with semi-definite programming solver

Example: Inverted pendulum

Real world examples
Segway, Rocket, etc.

Simulation results

Proposed controller is robust against clock offsets

Conclusion

- Sensors & controllers are not synchronized in networks
- Proposed method gives offset-tolerant controllers

Related works

- How much do offsets affect control performances?
- How large offsets are allowed for stabilization?

