Controlling the Human Heart: Challenges and Opportunities

Radu Grosu

Stony Brook University Vienna University of Technology

CPS: Electro-Mechanical Pump

Error-Free System

Error-Prone System

Whose problem is this to solve?

It is a Medical Problem

National Vital Statistics Report, Vol.49, No.11, October 12, 2006 Deaths and percent of total deaths for the 10 leading causes of death: USA

Rank	Cause of death	Total Deaths	Percentage
	All causes	2,391,399	100.0
1	Diseases of heart	725,192	30.3
2	Malignant neoplasms	549,838	23.0
3	Cerebrovascular diseases	167,366	7.0
4	Chronic lower respiratory diseases	124,181	5.2
5	Accidents (unintentional injuries)	97,860	4.1
6	Diabetes mellitus	68,399	2.9
7	Influenza and pneumonia	63,730	2.7
8	Alzheimer's disease	44,536	1.9
9	Nephritis, nephrotic syndrome and nephrosis	35,525	1.5
10	Septicemia	30,680	1.3
	All other causes	484,092	20.2

http://www.cdc.gov/nchs/data/nvsr/nvsr57/nvsr57_14.pdf

What are the Fundamental Questions?

For cardiologists, pharmacologists and patients:

- What is the risk of a patient to develop the disorder?
- Under what circumstances will such a disorder arise?

Given a disorder-specification and a model of the ventricle:

- What is the probability of the model to satisfy the specification?
- For what parameter-ranges does it satisfy the specification?

Whose problem is this to solve?

CMACS: Multi-Institutional, -Disciplinary Team 7 Universities, 2 Colleges, 14 Departments/Schools

CMACS Atrial-Fibrillation Team

James Glimm Stony Brook

Robert Gilmour Cornell

Radu Grosu Stony Brook

Ezio Bartocci Stony Brook

Sicun Gao CMU

Edmund Clarke СМО

Flavio Fenton Cornell

NASA

Cornell

Impossible Without

An Expeditions Project

Klaus Havelund NASA

Nancy Griffeth

Colas Le Guernic

NYU

Patrick Cousot NYU

Gerard Holzmann

It is a Communication-Structure Problem

4 billion nodes interconnected in a very sophysticated way!

It is a Communication-Structure Problem

Complicated structure

Canine heart: slices (DTMRI @ 250 microns resolution)

Fibers

Anatomy

Pittsburgh NMR Center

Vessels

MicroCT Cornell

It is a Cellular Problem

It is an Electrical Problem

$$\dot{\mathbf{V}} = -(\mathbf{I}_{Na} + \mathbf{I}_{Ca} + \mathbf{I}_{CaK} + \mathbf{I}_{K1} + \mathbf{I}_{NaCa} + \mathbf{I}_{NaK} + \mathbf{I}_{Cab} + \mathbf{I}_{Nab} + \mathbf{I}_{Kr} + \mathbf{I}_{Ks} + \mathbf{I}_{Kv1.4} + \mathbf{I}_{Kv4.3} + \mathbf{I}_{p(Ca)} + \mathbf{I}_{stim})$$

- Rate of change in membrane potential (V):

Sum of physiological currents due to ion flows across membrane

- Physiologically detailed: 67 variables

Difficult to simulate and formally analyze

It is a Cellular-Abstraction Problem

It is a Molecular Problem

It is a Molecular Abstraction Problem

It is a Molecular Abstraction Problem

These result appeared in CMSB 2012

Nonlinear Hybrid Automaton

2D/3D Simulation of Partial Differential Equations

$$\dot{u} = \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so})$$

PDEs are simulated as Finite Difference Equations

lyer (67 V)

-20 0

-60 -40

-80

0 1

Advances in Physiology Education 35: 1-11, 2011

Web Graphics Language (Fenton-Karma 2V)

Runs in your Browser and Uses your own GPU 3D Model of a Mouse Heart (Fenton-Karma 3V Model)

3D Model of a Pig Heart (Fenton-Karma 3V Model)

It is a Verification Problem

It is a Verification Problem

Genetic regulatory network with Parameters κ, γ

$$\dot{x}_i = f_i(x,p) = \sum_{j \in P_i} \kappa_{ij} r_{ij}(x) - \sum_{j \in D_i} \gamma_{ij} r_{ij}(x) x_i$$

Kripke Structure for Fixed Parameters

Computation of transitions: By examining corner flows

Ramps

It is a Verification Problem

Genetic regulatory network with Parameters κ, γ

$$\dot{x}_i = f_i(x,p) = \sum_{j \in P_i} \kappa_{ij} r_{ij}(x) - \sum_{j \in D_i} \gamma_{ij} r_{ij}(x) x_i$$

These results appeared in CAV 2011, LNCS 6806, pp. 396-411, 2011.

It is a Control Problem

Defibrillation with 90% energy reduction

It is a Control Problem

Low Energy Defibrillation (LEAP) tested for Canine Hearts

For Both AF and VF we have found successful defibrillation with LEAP using about10% of the energy required by the standard 1 shock defibrillation protocol

Furthermore, using high resolution mCT We obtained detail vessel distribution of the heart and found a scaling law which was used to obtain a theory that explains the mechanism behind LEAP.

These results appeared this year in Nature, Jul 13 475(7355):235-9; 2011

It is a CPS Problem

We are on the brink of a paradigm shift in the Diagnosis and treatment of cardiac disorders

It is up to us in to make it happen!