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Objectives

• Estimate route-level traffic flow (demand) in urban setting
• Develop a convex optimization approach to large-scale
under-determined state estimation problem

• Exploit pervasiveness of mobile network data, in particular
when fused with existing loop detector data.

• Motivation: Accurate traffic demand estimates for urban
transportation networks will enable a more effective use of
traffic infrastructure (throughput, energy, reliability,
robustness)
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Modeling of transportation network (M)
Given:
• O: Origins and destinations
• R: Routes of interest

Sensor inputs:
• b: Link flow from loop detectors (vehicle count)
• f: Origin-destination (OD) flow estimated frommobile
network data
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.Traffic demand estimation
Problem: Given transport modelM, estimate route-level
demand (flow split) x
• Convex formulation for the static problem:

minx 1
2∥Ax− b∥22

s.t. Ux = 1
x ≥ 0

• Small example (noiseless case)
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fAB = 500   vehicles/hr 

fCB = 1000 vehicles/hr 

b = 300   vehicles/hr 

Flow between origin  
and destination (OD) 

Flow on link 

x1+x2 = 1, x3+x4 = 1, 
x1,x2,x3,x4 ≥ 0 

Distribution of 
flow among routes 

0x1 + fABx2 + fCBx3 + 0x4 = b Flow constraints 

Matrix form: x ≥ 0  x = 1 
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• Equality constraint elimination and a simplifying particular
solution x0:

minz 1
2∥A(x0 + Nz)− b∥22

s.t. 0 ≤ z(k)1 ≤ · · · ≤ z(k)nk−1 ≤ 1, ∀k (Ω)

whereN = Null(U), x0 =
(
eTn1 . . . eTnp

)T
,

eTnk =
(
0 . . . 0 1

)
∈ Rnk, and z =

(
z(1) . . . z(p)

)T
Algorithm: Spectral projected gradient (SPG) method
• Non-monotonic fast first-order descent method with super
linear behavior on large scale problems

• Gradient: ∇f(z) = NTAT (A(x0 + Nz)− b)
• Separable constraints: projection onto the feasible set in the
form of a block ordinal least squares problem

PΩ(z) = (z∗(1), . . . , z∗(p))
where z∗(k) = argmin

u

∥∥z(k) − u(k)
∥∥2
2

s.t. 0 ≤ u(k)1 ≤ · · · ≤ u(k)nk−1 ≤ 1, ∀k

• Isotonic regression with complete order (IRC), solved exactly
in O

(
n
)

Numerical experiments (preliminary)

14x9 (2x3 grid) 24x21 (3x3 grid) 34x39 (3x4 grid) 76x165 (4x6 grid) 170x735 (5x10 grid)
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Error vs size of A (and network) vs initialization

Size of A matrix (size of network grid)
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Random

Popularity

10Popularity

• Synthetic data generated from grid network, considering 3
routes between all OD pairs and sensors (b) on all links

• Initialized SPG 1) randomly, 2) based on popularity, and 3)
10popularity, where popularity is a heuristic ranking of the routes

• Error metric is the worst performing route split
• High sensitivity to initialization point
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Extensions
• Iterative algorithm for higher accuracy of static flow
estimation using block-coordinate descent algorithm

minf,x
∥∥f− fg

∥∥2
2

s.t. A(f)x = b
Ux = 1, x ≥ 0

where f is the OD flow estimate, and fg(x, b) is the radiation
model solution (heuristic)

• Dynamic problem: flows not stationary
• Noise modeling
• Deployment on I-210 corridor in California, US

I-210 corridor with 321 traffic analysis zones (TAZ) and an example of route
assignment for a given OD pair
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Project context
Demand prediction
• Problem: Given demand estimates (A, x) data andmodelM,
estimate the time-varying distribution of demand (per OD) Pf

over a short time horizon
• Study parametric and non-parametric estimation techniques
for prediction of traffic demand, using previously unavailable
route-level flow estimates

Control of urban transportation
• Problem: Given demand forecasts Pf, demand estimates
(A, x), and augmentedmodelM′, actuate to optimize for
metrics

• Augmented transport modelM′ with actuators (autonomous
vehicles, stop lights) and performance metrics ( throughput,
energy consumption, average user wait time, etc.)

• Pilot deployment on California I-210 corridor in the form of an
advanced decision support system tominimize congestion by
coordinating heterogeneous capacity vehicles

• Study emergent behaviors in multi-agent systems as a means
to control traffic, parameterized by level of control, e.g.
flocking, shepherding, load balancing, virtual stop lights
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