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Microgrids are small-footprint power systems comprised of diverse power generation sources, energy
storage devices, and loads. An appealing feature of microgrids is flexibility. Depending on ambient condi-
tions, operational policies, and utility-power availability, they can operate in grid-connected, islanded, or
hybrid modes. Like the bulk power system, microgrids are complex cyber physical systems (CPSs) with
electrical, mechanical, economic, and communication, computing and control subsystems.

As a key part of the emerging distributed-generation paradigm, microgrids offer several system-level
advantages. In addition to reducing transmission and distribution losses, these include increasing renewable
integration, and ensuring a reliable and secure power supply to critical loads in residential, commercial,
and industrial sectors. The importance of microgrids in sustaining critical infrastructure has come to light
recently in the face of hurricane Sandy that struck large parts of the North-East U.S. As reported in
http://www.greentechmedia.com on Nov. 20, 2012:

Amidst the blackouts ... a few islands of light and heat stood out. From the suburbs of Maryland
and bucolic Princeton, N.J. to the hardest-hit sections of downtown Manhattan, microgrids—
building or campus-wide backup power systems that can disconnect, or “island” from the grid—
stood firm during the storm, proving their value in a disaster.

Extenuating weather conditions due to global climate change may conceivably push microgrids to the
forefront of disaster relief efforts. Global climate change notwithstanding, the benefits of distributed
generation are now widely appreciated [1], and microgrids are key enablers of this paradigm shift.

Key Challenges

The critical issue in formulating effective approaches to microgrid management lies in the inherently
stochastic environment within which microgrids operate. In order to increase deployment of microgrids it
is necessary to develop modeling, estimation, and control tools that explicitly address:

i) Uncertainty. Renewable resources (such as photovoltaic systems) and uncontrollable loads (such
as plug-in hybrid-electric vehicles) induce uncertainty and intermittency.

ii) Reliability. Lack of field data on failures and repairs in the constituent cyber-physical subsystems
and employment of nascent technology make reliability a critical concern.

iii) Security. Uncertain and unpredictable cyber-layer attacks may have detrimental impacts on stability
and quality of power in physical-layer subsystems.

Prior art

Theory and techniques for microgrid management that explicitly account for complex cyber-physical inter-
actions within a stochastic operational environment have been lacking. With regard to microgrid reliability
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modeling, typical metrics derive from power distribution systems that focus primarily on system availabil-
ity while discounting performance. To quantify how well the cyber-physical subsystems meet performance
objectives (and not just if they are available), there is a need to characterize performability—a notion that
captures a system’s performance while acknowledging its reliability. Unlike robust performance which em-
phasizes worst-case scenarios, performability notions are better suited for quantifying performance within
a probabilistic setting. Furthermore, classical methods for parameter identification and state estimation
are difficult to implement in microgrids that contend with uncertainty and operate in multiple configu-
rations. Likewise, current approaches to coping with cyber attacks typically assume linear time-invariant
(LTI) models and ignore dynamics of e.g., power electronic interfaces, that are undeniably tied to system
stability in small-footprint power systems. Additionally, it has been recognized that decentralized control
is essential to ensuring data privacy and resilience to cyber attacks. However, optimal control of hybrid
systems has largely focused on design of centralized controllers that require information from all spatially
distributed subsystems. Obviously, this requirement is challenging to meet in microgrid management.

Proposed Framework

We contend that the range of uncertain phenomena that impact cyber-enabled microgrids can be captured
using stochastic hybrid system (SHS) models. These models are well-suited for systems that operate
in uncertain environments and have a discrete state (that takes values in a finite set) and a continuous
state (that evolves according to a stochastic differential equation (SDE)). The different values that the
discrete state may take can originate from uncertain generation/loads, failures in cyber/physical layers, and
charging/discharging of energy-storage devices. The continuous state can account for electrical variables
(e.g., network voltages, currents, and frequency), control/communication states, and economic indicators
(e.g., expended repair cost, and incentives for participation in demand-response programs). While SDEs
capture small-signal uncertainties introduced by thermal fluctuations, incident irradiation variation, and
load uncertainty, jumps in discrete and continuous states are triggered by large-signal changes (e.g., a
sudden drop in the power output of an inverter due to failure or sudden appearance of clouds).

The SHS framework encompasses a variety of commonly used stochastic modeling and analysis tools
including: i) jump linear systems (linear flows and no jumps in the continuous state); ii) discrete-space
continuous-time Markov chains (no continuous state and constant/time-varying transition rates for the
discrete state); iii) Markov reward models (constant rate of growth in the continuous state); and iv)
piecewise deterministic Markov processes (no diffusion terms in the SDEs). Given this generality, it is not
surprising that SHS formalisms have been applied to study a host of other CPS including communication
networks [2, 3], air-traffic management [4, 5], biochemical networks [6, 7], and bulk power systems [8, 9].

Example: Customer-Driven Microgrid

The state-transition diagram in Fig. 1 provides a graphical illustration of an SHS model for a customer-
driven microgrid. This microgrid includes a neighborhood with high photovoltaic (PV) system penetra-
tion and a community-level charging station for plug-in hybrid-electric vehicles. In order to regulate ac-
tive/reactive power for voltage/frequency control, and coordinate transitioning into/out of islanded modes,
all power electronics interfaces are assumed capable of communicating among themselves and with a central
utility-level controller.

Multiple operational modes may originate from uncertainty in ambient conditions, random failures,
and cyber attacks. Markov models are commonly used to describe uncertainty in renewable resources.
Regarding uncertain loads, Markovian assumptions are consistent with well-established power-system load
models. Stochastic hybrid models have been also used to describe aggregate behavior of thermostatically
controlled heating and cooling loads.
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Perspectives & Concluding Remarks

The SHS-based framework to stochastic management of microgrids seeks tangible answers to the following
questions: i) What are appropriate reliability metrics that quantify microgrid performance across different
time scales using limited field data and affordable computations?; ii) What are the breakthroughs necessary
to devise efficient strategies for microgrid state estimation and parameter identification in the face of
unpredictable cyber-attacks?; and iii) What advancements are needed in optimal control methods to address
microgrid operational uncertainty and multiple performance objectives, while respecting data privacy?
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Figure 1: State-transition diagram with illustrative modes and corresponding transitions for CPS failures and uncer-
tain generation/load. Details are hidden in the interest of clarity; e.g., {g1, . . . , gG} might correspond to G different
irradiation levels (g1 depicts one such irradiation level).
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