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Summary

Fig. 2 - Real-time decoder development
for SCI subjects. In years 1-4, we devel-
oped, evaluated, and deployed a decoder
for reach intent for subjects with high-level
SCI. The system has been evaluated as an
interface to control a robot assistant.

Fig. 5 - A hybrid BCI for reaching that incorpo-
rates neural estimation of movement state.
Data from non-human primates. (A) Schematic of
controller design. (B) Classifier performance for
detecting movement state. (C) Continuous mixture
of posture and movment decoders. Note rapid
transition. (D) Performance difference of separate

posture and movement decoders compared to a
single decoder for the entire movement trajectory.
(E) Performance of hybrid decoder with estimated
states to a hybrid decoder with known states and a
single-state decoder.

Functional electrical stimulation (FES) is a promising technology for
activating muscles in spinal cord injured (SCI) patients. The objective
of our project was to develop an intuitive user interface and control
system for FES that allows high-level tetraplegic patients to regain
the use of their own arm. There have been three primary outcomes:

Fig. 3 - Decoder structure
The decoder was a probabilistic a mixture of
Kalman filters incorporating eye gaze for sti-
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There have been two main scientific thrusts: decoder development for b 5 ;

Fig. 4 - Decoder performance

The mixture model performed best for all abil-
ity levels, though user preference changed
with ability.

determining how the subjects wish to move their arm, and controller
development for getting the arm to the desired location (Fig. 1). We
used human and animal models for each of these project compo-
nents, to investigate practical issues relevant to our current human
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Blocks indicate main project components 5. Preference of SCI subjects varied with impairment level.
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Fig. 7 - Identification and position control of a paralyzed arm. While model-based robot controllers can in-
corporate models built from first principles, the same is generally not true for physiological controllers. We
therefore implemented a data-based approach. (A) Structure of semi-parametric model. (B) Process for
system identification. (C) comparison of data required to train candidate model structures. (D) Model predic-
tions of joint torque (bottom) during imposed movement trajectories (top). Model provides estimates of expect-

ed mean trajectory and variance about the mean.

Fig. 8 - Controlling arm impedance

Impedance is a critical aspect of the FES controller, particularly during interactions
with the environment. We developed a controller that allows impedance to be regu-
lated independent from interaction forces, and evaluated this controller in our human
subject. (A) Endpoint forces achieved with different levels of co-contraction
(null-space control). (B) Corresponding measures of endpoint stiffness (C) Stiffness
from repeated measures.
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