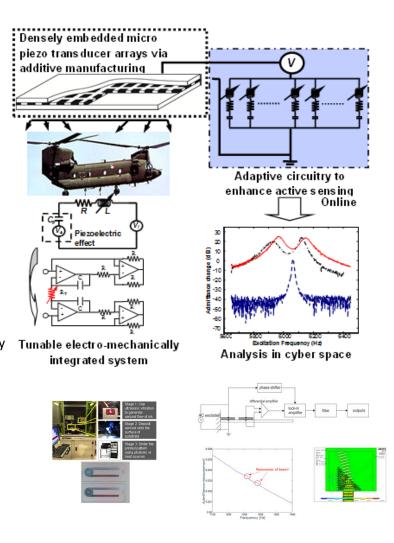
Cybernizing Mechanical Structures Through Integrated Sensor-Structure Fabrication CPS-1544707/CPS-1545038/CPS-1544595, 01/01/2016-12/31/2018

Jiong Tang (University of Connecticut), Chuck Zhang (Georgia Institute of Technology), Yu Ding (Texas A&M University)


Challenge: How to perform timely and accurate identification of structural faults to increase reliability/durability?

- Structural faults continuous in nature, with infinitely many possible patterns.
- Active interrogation hard to generate high-frequency actuation inside the structure; hard to gather sensing information.
- Sensor data analysis insufficient information, contaminated by noise/uncertainty.

Solution:

- Synthesis of new sensing modality duelfield electro-mechanical tailoring with tunable, integrated actuator/sensor units.
- Design of new fabrication scheme directly insertion of sensing nerves inside of structure.
- Formulation of new data analytics intelligent and robust inference to identify faults and to guide sensor tuning.

CPS-1544707/CPS-1545038/CPS-1544595; UConn, Georgia Tech, TAMU; Tang/Zhang/Ding

Scientific Impact: Utilize additive manufacturing to produce structure with densely distributed active sensing elements to facilitate autonomous operation.

- Adaptive sensor/actuator design concept with wave guiding and circuitry integration features.
- Process modeling and optimization of additive manufacturing for structure inserted with active transducer array.
- Hybrid inverse analysis algorithms combining rich sensor data with firstprinciple models.

Broader Impact:

- Autonomous structural system with selfdiagnosis capability can cause paradigm shift in structural design and operation.
- Outcome can benefit aerospace, mechanical, transportation, manufacturing, and other industries.
- Contribute to workforce training by promoting sensing/ manufacturing/ data analytics related research.
- Fundamentally Increase the durability and reliability of composite structures.