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1 INTRODUCTION

1 Introduction

UnCoVerCPS develops new methods and tools for cyber-physical systems with (fully or par-

tially) autonomous behavior in partially known and time-varying environments. Since the

environment is dynamic and only partially known, constraints for the controller also become

uncertain and time-varying, which makes them only fulfillable during the operation of the

system. Therefore, we cannot design a controller a-priori. Instead, we rely on automatically

generated constraints during runtime. Especially in our application areas automated driving

and human-robot cooperation, constraints for controller design are hard to obtain since the

respective environments are populated with intelligent agents whose intentions are unknown.

In automated driving, it is not clear what the future actions of surrounding traffic participants

are and in human-robot cooperation, it is not obvious what the future actions of surrounding

humans are.

This deliverable presents new techniques that compute all possible future behaviors of

surrounding intelligent agents, especially those of traffic participants in road traffic and human

workers in a factory, based on a dynamical model. The set of all possible behaviors makes it

possible to obtain the future occupancy of those agents over time in space. Those occupancy

regions, which grow over time due to the uncertainty in the future behavior, are used as

constraints for the online controller synthesis. When the controller design can ensure that it

never enters any occupancy of surrounding agents, it can be proven that the overall system

behavior is free of collisions. In order to prove this property, we compute future possible

occupancies in an over-approximative way, i.e. the true occupancy is guaranteed to be found

in the computed over-approximation.

robot

planned trajectory
goal
region

table

reachable
set over time

Figure 1: Human worker prediction.

The process of predicting future behav-

ior is constantly repeated using new mea-

surements of the environment. The set of

future behaviors is obtained from reachabil-

ity analysis techniques, which are developed

in UnCoVerCPS. We also consider uncertain

measurements by enlarging measured states

by the set of possible measurement errors. In

Fig. 1, the behavior prediction via reachability analysis is sketched for our application sce-

nario human-machine collaborative manufacturing. The predicted occupancy of the arms of

a human worker over time is used as a forbidden region for the control design, providing the

constraints of the controller.
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2 OVER-APPROXIMATIVE COMPUTATIONS

2 Over-Approximative Computations

We first introduce reachability analysis to obtain the set of possible behaviors. We denote the

bounded set of uncertain initial states as R(0). Uncertain initial states are important since it

is difficult to exactly measure the state of surrounding entities. If not all states can be directly

measured, one requires state observers. Those are not exact as well and thus, assuming a set

of possible initial states makes it possible to consider all eventualities. Further, we introduce

the bounded set U of possible inputs to the model of the agents, modeling possible actions

of the agent. The solution to its dynamical model ẋ = f(x, u) for x(0) = x0, t ∈ [0, tf ], and

input trajectory u(·) is denoted by χ(t, x0, u(·)). Note that u(·) refers to a trajectory, whereas

u(t) refers to the value of the trajectory at time t. The exact reachable set for an uncertain

initial set R(0) and a set of possible inputs U is

Re([0, tf ]) =
{

χ(t, x0, u(·))
∣

∣

∣
t ∈ [0, tf ], x0 ∈ R(0), ∀t : u(t) ∈ U

}

. (1)

In general, the set of reachable states cannot be computed exactly [1], so that one has to

compute over-approximations R([0, tf ]) ⊇ R
e([0, tf ]).

However, since the reachable set has to be obtained in a very short amount of time due to

the online computation of constraints, a direct application of reachability analysis techniques

is often not feasible. Instead, we compute abstractions of the dynamics of other agents and

intersect the resulting reachable sets. This procedure is over-approximative as shown in

Proposition 2.1. The abstractions additionally make it possible to exploit special properties

such as monotonicity as later discussed in detail for the applications automated driving and

human-robot interaction. For combining the results of the abstractions, we introduce an

operator reach() returning the reachable set of a model Mi for an infinite time horizon, and

the projection operator proj(), which projects a set onto dimensions relevant for occupancy

checks (typically position and orientation).

Proposition 2.1 (Overapproximative Occupancy) Given are models Mi, i = 1 . . . m

which are abstractions of model M0, i.e., reach(M0) ⊆ reach(Mi). The occupancy of the

model M0 can be overapproximated by

proj
(

reach(M0)
)

⊆
m
⋂

i=1

proj
(

reach(Mi)
)

. �
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3 SET-BASED PREDICTION OF ROAD VEHICLES FOR AUTOMATED DRIVING

Proof 1 Since reach(M0) ⊆ reach(Mi), we have that

reach(M0) ⊆
m
⋂

i=1

reach(Mi)

→ proj
(

reach(M0)
)

⊆ proj
(

m
⋂

i=1

reach(Mi)
)

Further, it is shown in [2, Prop. 1] that

proj
(

m
⋂

i=1

reach(Mi)
)

⊆
m
⋂

i=1

proj
(

reach(Mi)
)

.

The proposed divide and conquer approach is much faster than directly applying reachability

analysis since the computational complexity of reachability analysis is superlinear, thus the

added computational time of partial reachability problems is typically much less than solving

the problem at once.

3 Set-Based Prediction of Road Vehicles for Automated Driv-

ing

3.1 Previous Work

Automated cars are expected to provide a broad range of benefits compared to human-driven

vehicles. Among them are an increased road safety, better traffic throughput, and increased

mobility for people who cannot drive. Today, 90% of car crashes are caused by human

error [3], which could be prevented by fully or partially automated vehicles.

Collision avoidance systems are an important component in the architecture of vehicles

for making driving safer [4]. Collision avoidance systems could either override decisions

of humans or software components of automated vehicles. We envision collision avoidance

systems that are provably correct and certifiable. Due to formal correctness, they should

have the approval to override decisions, even those of other decision making components

in automated cars, which are typically not formally correct. In order to guarantee safe

emergency maneuvers, the occupancy for other traffic participants has to be predicted as

shown in Fig. 2.

We group previous work on occupancy prediction into four main categories: approaches

computing a single future behavior, a countable set of possible behaviors, probability distri-

butions of future behaviors, and uncountable sets of possible behaviors.

Previous work that predicts only a single behavior of other traffic participants can be

found in [5], [6], [7], and [8]. In [9] the prediction of the behavior of surrounding vehicles is
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3 SET-BASED PREDICTION OF ROAD VEHICLES FOR AUTOMATED DRIVING

➀ occupancy prediction ➁ trajectory planning

➂ collision checking➃ trajectory tracking

controller

Figure 2: Collision avoidance concept.

done under the assumption that they tend to keep their current velocity and distance to their

leading vehicle constant, which is not necessarily correct. Also the focus of their method

is in-lane driving, without considering complex situations. Thus, this approach might miss

critical scenarios due to the fact that many more future behaviors could result in an accident.

The next class of methods considers a countable set of possible trajectories of other traffic

participants. Simulation approaches are widely used for collision assessment. In [10] multiple

simulations have been used to generate different physically possible trajectories. Another

simulation-based method uses Monte Carlo sampling, where the trajectories are randomly

generated, as in [11] and [12]. However, since the number of traffic scenarios are infinitely

many, simulation techniques cannot guarantee safety.

Since many possible future behaviors exist, a group of works predicts the probability

distribution of future behavior. In [13] the behavior of other traffic participants is predicted

using Dynamic Bayesian Networks (DBN). The models that describe the traffic prediction as

a DBN in [13] are learned online from unlabeled traffic observations. A map-based prediction

is proposed in [14], based on a stochastic filter able to determine the set of reasonable future

trajectories. The authors of [15] propose a probabilistic prediction algorithm of a generic

driver intent, capable of separating the straight driving from a right-turn maneuver. However,

this approach relies on accurate measurement of the driver’s gaze direction, which is often
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3 SET-BASED PREDICTION OF ROAD VEHICLES FOR AUTOMATED DRIVING

difficult to obtain. Another probabilistic approach has been suggested in [16] where the

probability of a crash is assessed. The probability distribution of a collision is modeled using

a product of Gaussians. Due to the probabilistic nature of the aforementioned approaches,

they cannot guarantee safety for bounded uncertainties unless probability distributions can

be exactly computed for very simple scenarios. In [17] and [18] the dynamics of traffic

participants is abstracted to Markov Chains in order to perform safety assessment.

To avoid any collision, every planned maneuver needs to be checked against the occupancy

prediction of other traffic participants. While some maneuvers can be precomputed [19],

e.g. turn left, turn right etc, the collision check must be performed constantly, since every

traffic situation is unique and a pre-computation of discretized situations is prohibitively

large. As computation time constraints must be fulfilled, most of the previous work in

mobile robotics considers a very simple model of surrounding dynamic obstacles. One of the

simplest models used for behavior prediction considers a point mass with limited velocity or

acceleration [20], [21]. Other non-holonomic models can also be used, like Dubin’s car [22],

or a tricycle model [23]. However, for complicated models, which are taking into account the

road boundaries or possible lane changes, a fast method is not known.

In order to guarantee safety, a Model Predictive Control framework can be used to in-

corporate the constraints based on the state of other vehicles in the proximity of the ego

car [24], [25]. Although the proposed theoretical approach from [24] is provably safe, the

authors assume that the communication between the vehicles is without error and informa-

tion such as lane change intention is perfectly known. In reality, these assumptions are very

hard to achieve. Recently, the concept of potential fields has also been applied for driving

safety assessment [26]. However, this approach considers full information access to model

parameters of other traffic participants.

In the architecture proposed in [27], the importance of trajectory prediction of other

vehicles is highlighted, but no algorithm for formally computing the occupancy prediction

is suggested. In this deliverable, a framework for robust and fast occupancy prediction of

automated vehicles is proposed. The approach makes use of reachability analysis, hence the

predicted occupancy sets are guaranteed safe, taking into consideration all possible trajecto-

ries.

3.2 Overview and Assumptions

Our approach is based on a module that recurrently checks whether collision-free maneuvers

exist. This modules can be seen as a watchdog for an automatically driving vehicle or as
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3 SET-BASED PREDICTION OF ROAD VEHICLES FOR AUTOMATED DRIVING

part of a driving assistant system. It consists of four main steps: occupancy prediction,

trajectory planning, trajectory tracking, and collision checking. First, a set of possible future

trajectories of other traffic participants is predicted (see Fig. 2, ➀). Second, the trajectory

planning algorithm generates possible trajectories of the ego car (Fig. 2, ➁); then it is checked

if the generated trajectories do not intersect with the predicted occupancy of the other traffic

participants (Fig. 2, ➂). Finally, if a very limited set of safe trajectories exists, the best

emergency maneuver is enabled using trajectory tracking (Fig. 2, ➃).

The objective of this work is to create a framework for automatically computing the

occupancy sets of other traffic participants on arbitrary road networks. A fast and robust

algorithm for computing the occupancy prediction is required in order to meet the real-time

system constraints. The proposed algorithm for computing the over-approximative occupancy

takes as main inputs the surrounding traffic participants and the map of the road network.

The occupancy prediction is computed for consecutive time intervals instead of points in order

to ensure that no collision is missed between points in time. The main idea of the algorithm

is the following: First, given the models of traffic participants as a dynamical system stored

in a database, we propose two types of abstractions of them as described in Sec. 2. The

reachable set of the first abstraction gives the lower and upper bound in the longitudinal

direction and the reachable set of the second abstraction gives the left and right bound in the

lateral direction, as shown in Fig. 3. Finally, the intersection of the longitudinal and lateral

bounds determines the over-approximation of the vehicle occupancy.

initial occupancy

left bound

right bound

front
bound

rear
bound

Figure 3: Initial occupancy and boundaries of the occupancy set for a long time interval.

The following assumptions are made throughout the paper: the data related to the vehicles

placed in proximity of the ego car is known. Moreover, it is assumed that the required

information, position, orientation, length, width, velocity, acceleration of each car and the

map, is available in a given time interval, but these values can be also assumed as uncertain

within bounded sets.
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3 SET-BASED PREDICTION OF ROAD VEHICLES FOR AUTOMATED DRIVING

3.3 Mathematical Modeling

In this subsection we present the formal representation of the road network and the model

of the vehicle that is used for computing the occupancy prediction.

3.3.1 Road Network Representation

A formal and robust representation of the road network is required in order to compute the

occupancy prediction. To this end, lanelets [28] are used, which are atomic, interconnected,

and drivable road segments.

Definition 3.1 (Lanelet) A lanelet is defined by its left and right bound, where each bound

is represented by an array of points (a polyline), as shown in Fig. 4.

The geometry of the lane boundaries is either provided from a map or by algorithms which

build the map online using onboard sensors, see e.g. [29], [30]. Without loss of generality we

assume that the lane information is provided by a map from now on.

left bound right bound

lanelet
start points

end points

Figure 4: Lanelets

The lane boundary information for lanelets can be directly obtained from an open-source

map (e.g. OpenSteetMap1) by importing a raw map into the free editor JavaOpenStreetMap

(JOSM)2. We additionally annotate the raw data consisting of left border and right border by

the speed limit (maximum allowed speed on that specific lanelet), a unique ID, the lane width,

and the driving direction. Without loss of generality, it is assumed that all laterally adjacent

lanes have the same length when creating the lanelets using JOSM. This is exemplarily

shown for the road network in Fig. 4, where lanelet 1 has the same length as lanelet 2. This

assumption is useful for representing the outgoing transition from one lane to another.

1www.openstreetmap.org
2https://josm.openstreetmap.de
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3 SET-BASED PREDICTION OF ROAD VEHICLES FOR AUTOMATED DRIVING

In order to obtain all future trajectories of a vehicle, an adjacent lanelet matrix is com-

puted upfront. For this purpose, we represent the road network as a directed graph G = (V, E),

where the vertices V are represented by the lanelets and the directed edges E represent the

possible transition between two adjacent lanelets, where each node has four types of outgoing

edges: longitudinal, left, right, empty. The adjacent lanelet matrix AG is defined as follows:

AG : V × V → {long , right , left , ∅}, where × denotes the Cartesian product.

We define start points and end points of a lanelet as the first and the final points of

the left and right border in driving direction, as shown in Fig. 4. Two lanelets are called

longitudinally adjacent, i.e., AG(lanelet1, lanelet2) = long, if the left and right start point of

one lanelet are identical with the corresponding final points of the other lanelet. We say that

lanelet2 is the left-adjacent lane of lanelet1, i.e., AG(lanelet1, lanelet2) = left, if the points of

the left border of lanelet1 are identical to the ones of the right border of lanelet2. This is

analogously defined for right-adjacent lanes. For implementation reasons, one might accept

small deviations of connection point of lanelets rather than demanding that the values are

identical.

For road networks which contain only longitudinal and laterally adjacent lanes, the con-

struction of the adjacent road matrix is straightforward. However, most road networks contain

also road bifurcations, see Fig. 4, which have to be constructed in a special way to ensure

that the computed occupancies are over-approximative. This is ensured by modeling possible

lane changes as long as there exists an intersection of lanes as shown in Fig. 5a. Since we

can only model that along the full length of a lanelet one can perform a lane change or one

cannot perform a lane change at all, we have to partition the lanelets accordingly. Therefor,

we introduce the point p as the intersection of the outer3 lane bounds of the bifurcating lanes,

see Fig. 5a. If the final points of the outer bounds of lanelet11 and lane21 correspond with

the point p, and lanelet21 and lane22 continue the corresponding lanes as shown in Fig. 5a,

all lanelets fulfill the constraint that they are either adjacent along their full length or not at

all. The resulting adjacency matrix is presented in Fig. 5b. The adjacency makes it possible

to define lanes:

Definition 3.2 (Lane) A lane is defined as the union of lanelets, which are longitudinally

adjacent.

3In a left curve, the outer bound is the right border and the left bound in a right curve.
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3 SET-BASED PREDICTION OF ROAD VEHICLES FOR AUTOMATED DRIVING

lane11 lane12

lane21

lane22laneint p

lane0

(a) Lanelets

0

21

11 12

22

longlong

left right

(b) Adjacency graph

Figure 5: Road bifurcation.

3.3.2 Model of Other Traffic Participants

In this part, the mathematical model of the other traffic participants is derived. We use

the approach from [31], where a simple model which satisfies the following constraints is

considered:

C1: positive longitudinal acceleration is stopped when a parameterized speed vmax is reached

(vmax could be set to a certain percentage above the official speed limit);

C2: driving backwards in a lane is not allowed;

C3: positive longitudinal acceleration is inversely proportional to speed above a parameter-

ized speed vS (modeling a maximum engine power);

C4: maximum absolute acceleration is limited by amax;

C5: actions that cause leaving the road/lane/sidewalk/crosswalk boundary are forbidden.

Crossing lanes is allowed if not permitted by lane markings and traffic signs.

While C3 and C4 are physical constraints, the other constraints are derived from the traffic

rules listed in Vienna Convention on Road Traffic [32]. The considered constraints can model

the uncertain behavior of the other traffic participants. Of course, further constraints which

reflect other traffic rules can be considered. However, removing some of the constraints does

not affect the soundness of the verification procedure but it increases the behavior uncertainty

of the other traffic participants, which leads to a more conservative behavior of the ego vehicle.

In the following we consider that the dynamics of the vehicle are modeled by a point mass

(while a rectangle is considered to enclose their size), using the approach described in [33]:

s̈x(t) = ax(t), s̈y(t) = ay(t), (2)
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3 SET-BASED PREDICTION OF ROAD VEHICLES FOR AUTOMATED DRIVING

where sx(t), sy(t) describe the position and ax(t), ay(t) describe the acceleration. In order to

restrict ax(t) and ay(t) according to the constraints C1-C4, unit vectors that point towards

the longitudinal and lateral direction of the vehicle are introduced: Φ(t)long = 1
v
[vx(t), vy(t)]

T ,

Φ(t)lat = 1
v
[−vy(t), vx(t)]

T , where v = ‖[vx, vy]
T ‖2. Thus, we can define ax, ay as a function

of the longitudinal acceleration along(t) and the lateral acceleration alat(t):





ax

ay



 = Φlongalong +Φlatalat.

Let us define a normalized steering input u1, where u1 = ±1 represents steering to the left

or right using the full tire friction potential; the lateral acceleration can be computed using

the following equation:

alat = amaxu1.

In order to consider constraint C4, the remaining acceleration potential in longitudinal direc-

tion is limited to

alongc1 =

√

a2max − a
lat2.

The maximum longitudinal acceleration for the engine power P and the vehicle mass m is

P
mv

= amax
vS
v
, where vS = P

amaxm
is the speed above which the acceleration is limited by

the engine power and no longer by the tire friction. However, since this parameter cannot

be easily estimated, another option is to set vS =∞, which provides an over-approximation

of the occupancy set. Similarly to the lateral acceleration, a normalized control input u2

for the longitudinal acceleration is introduced, where u2 = ±1 represents full braking and

full acceleration within the acceleration potential. Limited engine power, the restriction to

forward driving, and the maximum speed (constraints C1-C3) are considered by limiting the

acceleration to

ac2,long =











































amax
vS
v
, vS < v < vmax ∧ ũ2 > 0

amax, (0 < v ≤ vS ∨ (v > vS ∧ ũ2 ≤ 0))

∧v < vmax

0, v ≤ 0 ∨ v ≥ vmax
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3 SET-BASED PREDICTION OF ROAD VEHICLES FOR AUTOMATED DRIVING

Combining alongc1 and alongc2 results in the longitudinal acceleration which satisfies the proposed

constraints C1-C4 (C5 for leaving the road is considered later):

along =











ac2,long ũ2, |ac2,long ũ2| ≤ ac1,long

ac1,long sgn(ũ2), |ac2,long ũ2| > ac1,long,

Of course, static obstacles, e.g. stationary vehicles or just other objects, can also be

considered; they can be modeled as a particular case of a traffic participant, where the

acceleration and velocity is zero.

3.4 Set Prediction

In verification of real-time systems, one of the most important constraints is computation

time since the control input must be applied in a certain amount of time. In addition,

for safety-critical systems, control actions should be verified before execution. Automated

driving is a typical example of a safety-critical, real-time system and thus it has to address

the aforementioned constraints. In the collision avoidance concept proposed in [33], one of

the most time-consuming steps is the occupancy prediction of the other traffic participants.

Hence, in order to guarantee safety, the occupancy prediction must be performed within a

well-defined time interval.

In order to meet the safety requirements, we need a fast and reliable algorithm for oc-

cupancy prediction of other traffic participants. To this end, we use the results from Sec. 2

for the computation of the over-approximative occupancy. The more abstract models as de-

fined in Sec. 2 are considered, the more accurate the occupancy is, but as a drawback, the

computing time increases. So a trade-off between accuracy and computation time must be

found.

Subsequently we consider two abstract models for computing the occupancy of each traffic

participant. The first abstraction is denoted by M1 and it considers only constraint C4. The

predicted occupancy set computed using abstraction M1 is denoted by m1 and we call it

occupancy towards road boundaries. The second abstraction denoted by M2 considers the

constraints C1, C2, C3. The occupancy set along road boundaries using modelM2 is denoted

by m2. Finally, the constraint C5 is considered and the intersection between m1, m2, and

road network boundaries is performed. The intersection is denoted by occ and it represents

the over-approximative occupancy of the vehicle real model.

Algorithm 1 provides the overall occupancy prediction for the other traffic participants.

The occupancy prediction algorithm has the following inputs: the time horizon for which the

prediction is done th, time step ∆t and the vehicle information for each traffic participant
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Algorithm 1 Over-approximative occupancy.

Input: ∆t, th, cars, lanes, road network

Output: occ

1: parforcari ∈ cars

2: occi ← ∅

3: occm1 ← Occ TowardsRoadBoundary(cari,∆t, th);

4: for all lanej ∈ lanes

5: occm2 ← Occ MinMaxAcceleration(cari,∆t, th, lanej);

6: occ← Occ StayOnTheRoad(occm1, occm2, lanej);

7: occi ← merge(occi, occ);

8: end for

9: end parfor

cari. Additionally, the following inputs are required: lanes and road network, which are

formalized in Sec. 3.3.1. As stated in the Sec. 3.2, in the current setting we assume that the

map information is known. For each vehicle, first the occupancy prediction in lateral direction

is computed with Occ TowardsRoadBoundary. Then the occupancy in longitudinal direction

is predicted, using Occ MinMaxAcceleration. Finally, the intersection between the first and

second occupancy prediction with the lane boundaries, computed with Occ StayOnTheRoad

returns the over-approximated occupancy prediction. Furthermore, in order to improve the

performance, the algorithm is parallelized for every car. In the following subsections the

occupancy prediction for each considered abstract model is presented.

3.4.1 Occupancy Towards the Road Boundary (Abstraction 1)

The first abstraction of the vehicle dynamics considers the limited absolute acceleration.

Also, the reachable set of the proposed abstract model returns the occupancy of the vehicle

towards road boundaries. This abstraction makes it possible that the occupancy of each car,

at a specific moment in time t, can be described by a circle as mentioned in [21] with center

c and a radius r (see Fig. 6):

c(t) =





x(0)

y(0)



+





vx(0)

vy(0)



 t, r(t) =
1

2
amaxt

2, (3)

where x, y represent the current position of the vehicle and vx, vy, amax are the current velocity

in x and y direction, respectively maximum acceleration of the vehicle. As mentioned before,

we want to compute the occupancy for time intervals, as shown in Fig. 6, e.g. the occupancy
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Figure 6: Occupancy sets.

of the car between the moment tk and tk+1. In [33] it is proven that the boundary of the

occupancy is given by the following equation, assuming that x = 0, y = 0, vx = v and vy = 0:

bx(t) = v0t−
a2maxt

3

2v0
, by(t) =

√

1

4
a2maxt

4 −
(a2maxt

3

2v0

)2
. (4)

In order to prevent driving backward, the solution in x-direction is to set the maximum value

of bxmax = bx(tmax) for t ≥ tmax. The value of tmax is found by solving the equation b
′

x(t) = 0.

v0 −
3a2maxt

2

2v0
= 0⇒ tmax =

√

2

3

v0
amax

. (5)

Recall that our goal is to compute the occupancy for a given time interval [tk, tk+1]. Hence,

the occupancy between tk and tk+1 is given by the circles corresponding with the times, tk

and tk+1, OC(tk), OC(tk+1) and the boundary of the occupancy, as shown in equation 4, see

Fig. 6.

[bx(tk), by(tk)]

[bx(tk),−by(tk)]

[bx(tk+1), by(tk+1)]

[bx(tk+1),−by(tk+1)]

OC(tk) OC(tk+1)

(a) Boundary of occupancy

Q1

Q2
Q3

Q4 Q5

Q6

Q7

Q8Q9

Q10

OC(tk) OC(tk+1)

(b) Enclosing polytope

P1

P2 P3

P4P5

P6

(c) Convex polytope

Figure 7: Occupancy set. Computation steps.

We propose a three-step method in order to predict a robust occupancy set towards a road

boundary for a given time interval. First, we approximate the boundary of the occupancy

with the convex hull of circles OC(tk) and OC(tk+1), as shown in Fig. 7a. Let X be a finite

set, with xi ∈ X and i > 0. The convex hull of the set X is a set of all convex combination
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of xi:

Conv(X ) =
{

|X |
∑

i=1

λixi
∣

∣ ∀i : λi > 0,

|X |
∑

i=1

λi = 1
}

.

Thus, the occupancy set for the time interval [tk, tk+1] is enclosed by the circles OC(tk),

OC(tk+1) and the boundary determined by the vertices [bx(tk), by(tk)], [bx(tk+1), by(tk+1)],

[bx(tk),−by(tk)] and [bx(tk+1),−by(tk+1)]. For approximating a circle with a polygon, a large

number of vertices is needed. Hence, the occupancy polygon is also determined by a large

number of vertices. A polygon is determined by a finite number of coplanar line segments

such that each segment intersects exactly two others, one at each of its endpoints.

Taking into account that the polygon intersection algorithm is performed online, and

the time complexity depends on the number of vertices, we approximate each of the occu-

pancy circles with an appropriate polygon, as shown in Fig. 7b. Each circle is enclosed

by a rectangular shape, starting and ending with the vertices which determine the bound-

ary. The resulting occupancy set is a non-convex polytope, determined by 10 vertices:

{Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10}, where the vertices which determine the boundary

of occupancy and which merge the two rectangle shape are: Q2 = [bx(tk), by(tk)], Q3 =

[bx(tk+1), by(tk+1)]. Q8 = [bx(tk+1),−by(tk+1)], and Q9 = [bx(tk),−by(tk)]. The other ver-

tices can be easily computed. Finally, we consider that the over-approximative occupancy

set for the time interval [tk, tk+1] is given by the convex hull of the enclosing polytope, as

shown in Fig. 7c. This approach is considered as a trade-off between the high number of the

vertices and the accuracy of the approximation. Thus, the occupancy of the point mass is a

convex polytope given by the vertices {P1, P2, P3, P4, P5, P6}.

Let us denote with c(t) = [cx(t), cy(t)] the center of the occupancy of a point mass at time

t ∈ {tk, tk+1}. Then, one can determine the vertices of the over-approximative occupancy

between time step tk and tk+1 as follows, taking into account the aforementioned computation

steps:

P1 = [cx(tk)− r(tk), cy(tk)− by(tk)];

P2 = [cx(tk+1)− bx(tk+1), cy(tk+1) + r(tk+1)];

P3 = [cx(tk+1) + r(tk+1), cy(tk+1 + r(tk+1))];

P4 = [cx(tk+1) + r(tk+1), cy(tk+1 − (tk+1))];

P5 = [cx(tk+1)− bx(tk+1), cy(tk+1)− r(tk+1)];

P6 = [cx(tk)− r(tk), cy(tk) + by(tk)].

Due to convexity and position invariance, it suffices to compute the occupancy prediction

polygon of each vertex of the rectangle enclosing the vehicle Occrl, Occfl, Occfr and Occrr.
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α

[xc, yc]

y
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y
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x

Figure 8: Geometrical transformation - occupancy.

For simplicity, it is assumed that the enclosing rectangle coincides with the four extremities

of the vehicle, rear-left, front-left, front-right, and rear-right respectively. Each occupancy

polygon is then translated and rotated according to the current tire position [xc, yc] and

orientation α as shown in Fig. 8.

rear-left front-left

front-rightrear-right

Figure 9: Occupancy prediction for a vehicle, for a specific time interval.

Finally, the over-approximated occupancy prediction of each vehicle is done by computing

the convex hull between the vertices of each occupancy polygon, Occrl, Occfl, Occfr, Occrr,

see Fig. 9.

3.4.2 Occupancy Along the Road Boundary (Abstraction 2)

First, themerged lanes are constructed by connecting two longitudinally adjacent lanes within

the vehicle route network graph. In this deliverable, we assume that the front and rear bound

is determined by following the center polyline of each lane as defined in Sec.3.3.1 (future work

will consider the actual optimal solution). The algorithm used to compute the lower bound

and upper bound of the occupancy is presented in Algorithm. 2.

The position corresponding to the rear bound xmin of the occupancy is computed by

applying full deceleration to the minimum position of the car xcarmin
, for the current velocity

v, as described in [33]; then, the position corresponding to the front bound of the occupancy

is computed likewise, by applying full acceleration to the xcarmax . The next step is to find the

previous and the next points within the trajectory for xmin, qi and qi+1, as shown in Fig. 10.

Then, the perpendicular line pi on the segment determined by the previous and next points

[qi, qi+1] is constructed, such that the minimum point, xmin is contained by the perpendicular
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Algorithm 2 Occupancy along road boundary.

Input: t, car, lanes, road network, graph adj, traj

Output: occ along boundaries

1: occ along boundaries = ∅;

2: xmin ← xcarmin
+ vt− 1

2at
2;

3: xmax ← xcarmax + vt+ 1
2at

2;

4: find qi, qi+1 s.t. qi, qi+1 ∈ traj, qi ≤ xmin ≤ qi+1;

5: find qj , qj+1 s.t. qijqj+1 ∈ traj, qj ≤ xmin ≤ qj+1l

6: find line pi ⊥ [qi, qi+1] s.t. xmin ∈ pi;

7: find line pj ⊥ [qj , qj+1] s.t. xmax ∈ pj;

8: occ along boundaries = pi ∩ pj ∩ lane;

9: if left adjacency 6= ∅ then

10: repeat 4− 8 for trajleft;

11: end if

12: if right adjacency 6= ∅ then

13: repeat 4− 8 for trajright;

14: end if

line xmin ∈ pi. The perpendicular line represents the rear bound of the occupancy, see the red

line in Fig. 10. If the current lane has lateral adjacency, then the rear boundary is intersected

with the trajectory within the lateral lane; the output is point x′min. Finally, the steps 4-8

are repeated for the new x′min and the trajectory if the lateral lane. The rear bound of the

laterally adjacent lane is the blue one as sown in Fig. 10. The computation of the front

boundary is analogous.

Finally, the intersection of the rear and front bound with the road boundaries gives the

occupancy for the considered abstract model.

qi
qi+1

xmin

pi

x
′

min

trajectoryboundary of the lane

q
′

i
q
′

i+1

Figure 10: Boundary for lateral adjacency.
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3.4.3 Intersection between reachable sets of the abstract models

The last step in computing the over-approximative occupancy prediction is to intersect the

occupancy of all abstract models with the road boundary. Since the second abstraction al-

ready considers the intersection with the road boundaries, the over-approximative occupancy

is given by the intersection between the occupancy of the first and the second abstraction.

Since the intersection between occupancy ofM1 and occupancy ofM2 is done in real time,

a fast and efficient clipping algorithm is needed [34]. Taking into account these requirements,

the most fitting algorithm is Greiner Hormann Polygon Clipping Algorithm [35]. The main

advantage of this algorithm is that it can deal with non-convex shapes; in the current setting,

the occupancy ofM2 is non-convex because of the road boundary shape. The algorithm takes

as an input two polygons: the subject polygon S is the polygon which is being cut and the

clipping polygon C, as shown in Fig. 11.

S C

exitS entryS

exitS

entryS

Figure 11: Intersection between the occupancy of M1 and the occupancy of M2.

C is the polygon against which S is being cut. In this case, the subject polygon is the

occupancy of M1 model and the clipping polygon is the occupancy of the M2 model. The

occupancy ofM2 is the clip polygon because it is already intersected with the road boundaries.

Thus, the predicted occupancy is clipped against the road boundaries, prohibiting the vehicle

leaving the road.

3.5 Numerical Experiments

3.5.1 Simulation Results

In the following subsections three different lane scenarios taken from OpenStreetMap [36]

and processed with JOSM [37] are presented.

Scenario 1. In the first scenario, a road bifurcation is considered, as shown in Fig. 12. The

occupancy prediction is computed starting with t0 = 0, for a time horizon th = 3 seconds

and the step time for computing the occupancy interval is ∆t = 0.5.

The information about the vehicle, initial position [x, y], orientation α, maximum accel-

eration amax, maximum velocity vmax, the speed above which the acceleration is limited by
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Figure 12: Scenario 1. Map representation.

Table 1: Scenario 1: Vehicle parameters.

α v amax vmax vsw w l

-0.778 29.9 5 50 30 1.8 4.2

the engine power vsw, length l and width w, are shown in Table 1. In this situation there are

two possible trajectories which the vehicle can follow as shown in Fig. 13.

Scenario 2. The vehicle information is in Tab. 2 and the occupancy prediction is shown in

Fig. 14. In this situation, a lane change is possible towards both directions left and right.

Table 2: Scenario 2. Vehicle parameters.

α v amax vmax vsw w l

0.014 19.9 5 50 30 1.8 4.2

Scenario 3. The vehicle information are presented in Tab. 3 and the occupancy prediction

is shown in Fig. 15. In this scenario, the vehicle can perform a lane change towards the right

side.

The online occupancy prediction framework is implemented in MATLAB. The compu-

tation times on a laptop (Intel Core i7 Processor with 2,2 GHz and 16 GB memory) are

presented in Tab. 4 for each considered scenario.
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m1

m2

m1 ∩ m2

(a) Occupancy set. Trajectory 1. t0 = 2.

m1

m2

m1 ∩ m2

(b) Occupancy set. Trajectory 2. t0 = 2.

(c) Occupancy prediction. th = 3.

Figure 13: Scenario 1: Occupancy prediction.
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Figure 14: Scenario 2. Occupancy prediction.
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lane

Figure 15: Scenario 3. Occupancy prediction.

Table 3: Scenario 3. Vehicle parameters.

α v amax vmax vsw w l

-0.382 19.9 5 50 30 1.8 4.2

3.6 Conclusion on Road Traffic Prediction

A framework for automatically computing the occupancy prediction of other traffic partic-

ipants is presented. The proposed algorithm guarantees safety by considering all possible

trajectories and is able to handle arbitrary road networks. The performed simulations show

that our algorithm is fast enough for a real-time application. For the considered scenarios,

the time for computing the over-approximative prediction sets for each vehicle is less than 0.2

seconds, for a 3 second prediction horizon. Our modular framework can be easily integrated

in a collision avoidance system. Future work includes considering interaction between vehicles

in occupancy prediction algorithm and also including a wider range of traffic rules.

4 Set-Based Prediction of Humans for Human-Robot Coexis-

tence and Collaboration

Predicting the occupancy of a human in real-time is of great interest for the application

human-robot interaction in UnCoVerCPS, in order to compute unsafe regions in human-

avoidance strategies. The human body is composed of joints and links, suiting approxima-

tion by a kinematic chain, but the control strategy of the human is completely unknown.

Consequently, the potential occupancy grows very fast compared to the one of the robot and

it is difficult to compute a tight bound on occupancy in real-time. As such, current models

consider only known or probable movements and usually do not account for a range of human

dimensions. Focusing on the human arm, we present a new method where motion-capture
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Table 4: Time for computing occupancy prediction.

Scenario 1 Scenario 2 Scenario 3

Time (sec) 0.19 0.18 0.17

data from infrared markers is fitted to two abstractions. Reachable sets of the abstraction,

calculated in real time, are formally shown to enclose all possible future occupancies of the

arm for different body dimensions. The abstraction is built from measurements of 38 human

subjects and tested on movements from these subjects, and found to enclose the motion of the

arm. Such an over-approximative representation can guarantee safety in collision avoidance

algorithms.

4.1 Previous Work

To address the problem of unforeseeability, much work has been carried out on determining

what natural human movement is. The work in [38] aims at determining the cost function,

humans try to minimize. Morasso et al. [39] observe straight spatial hand trajectories in point-

to-point movements and deduce that the human control system operates in Cartesian space

rather than joint space. Flash and Hogan [40] present the minimum spatial jerk optimization

criterion which fits well to observed motion data. Available muscular effort is also a factor in

human movement; in [41], the authors present a muscle-effort minimization criterion which

predicts the natural movement of humans holding weights relatively accurately, whereas in

whole body movement, additional factors such as keeping balance may influence movement

[42]. Finally, a combination of models [43] taking into account spatial and joint movement

may result in a better fit than one particular model.

In our situation, however, we also do not know whether a human would behave “naturally”

in an environment with obstacles and a robot. The presence of a robot is known to affect

the movement of humans in the vicinity to varying degree [44]. Markov chains are used to

model human dynamics in [45], and probabilistic reachability analysis based on the dynamics

obtained is used in a collision avoidance algorithm. Ding et al. [46] present another set-based

prediction of the human occupancy using a Hidden Markov Model (HMM). The authors point

out that unforeseen or unusual movements would not be accounted for by their approach, and

propose reachability analysis as a complementary technique to account for such movements.

Assuming only a maximum obstacle speed, Vatcha and Xiao [47] present an algorithm using

dynamic envelopes, which works for slower-moving obstacles. Other approaches to human
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avoidance forego a human model entirely in favor of a measure of safety based on robot

state and distance from the human, which can be used to generate a reactive force to guide

the trajectory of the robot away from the human [48] or slow the intended trajectory [49]

[50]. While working well for normal interaction and in trials, these methods do not formally

guarantee avoiding injury to the human.

Concerning the geometry of the human, Digital Human Models (DHMs) where both

the skeleton geometry and the muscle placement are taken into account, such as the model

presented by Holzbaur et Al. [51] and AnyBody [52], are well studied and provide insight into

how humans move. Demircan et al. were successful in scaling and fitting the former model to

data captured from a human using a Vicon system in real-time and achieved position errors

of a few centimeters [53]. In this case, the geometry of the human under observation were

known, and it was not intended to formally bound the position error. They also considered

the production of maximum accelerations in the Cartesian space, showing how professional

athletes controlled their muscles optimally to produce the desired maximum acceleration [54].

In contrast to these approaches to predicting human motion from sensor data, our goal is

not simply to reduce the difference between the predicted motion and the observed motion,

but to bound the possible occupancy of the human and to calculate this possible occupancy

with real-time constraints. Our model should be as accurate as possible but must be over-

approximative, so that the occupancy given by the model for a certain time interval includes

all possible reachable occupancies of all shapes, sizes and masses of human arms to ensure

that robots can safely avoid all humans. As such, DHMs have two drawbacks: Firstly, they

do not account well for variation in size and mass parameters. Secondly, they are too complex

to calculate in real time for all positions with set-based arithmetic.

Reachability Analysis [55] has been widely used to guarantee the safety of hybrid systems

(i.e. systems with mixed discrete and continuous dynamics). Most approaches for reacha-

bility analysis can be categorized into simulation-based techniques (see e.g. [56]), Eulerian

techniques (see e.g. [57]), and Lagrangian techniques. Simulation-based and Eulerian tech-

niques suffer from an exponential complexity in the number of continuous state variables,

limiting the applicability to rather low-dimensional systems. Lagrangian schemes propagate

the reachable set for consecutive points in time or time intervals. Especially for linear contin-

uous dynamics, large state spaces with potentially more than 100 continuous state variables

can be efficiently computed. Typical set representations are: polytopes [58], zonotopes [59],

ellipsoids [60], support functions [61], and oriented hyper-rectangles [62]. One challenge of

this approach is that the set-based calculations required are rather time-consuming and for

systems with nonlinear dynamics and high dimensionality, it can be very difficult to calculate
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occupancies online and within real-time.

Our proposed approach fits sensor data of the human arm to a simple mathematical

model. In advance, we collect the set of parameters obtained from fitting motion capture

data to the mathematical model to abstract it using differential inclusions, so that in real

time we can perform inverse kinematics on sensor data, apply reachability analysis on the

differential inclusions obtaining a reachable set of joint angles at a future point in time;

and then transform this into an over-approximative potential occupancy at this time in the

workspace. The occupancy can then be forwarded to a robot trajectory planner to avoid

collisions with humans.

4.2 Problem Statement and Approach

The occupancy of the human body is fast changing and hard to predict: bodies have different

dimensions, shapes and a large number of degrees of freedom. We focus on the movement

of the human arm. Our approach has two phases: offline, we fit motion capture data to a

kinematic model of the arm (Sec. 4.4), to determine parameters such as length, maximum

accelerations and maximum joint velocities for a dynamic model (Sec. 4.5). Online and in real

time, we fit sensor data to the kinematic model via inverse kinematics and use the dynamics

obtained offline to predict the set of possible states of the model at a future time. Finally, we

compute the potential occupancy in space of the arm as a mapping from that set of states.

We test our human arm model on as yet unverified movements of the test subjects to validate

the accuracy and the conservativeness of our occupancy prediction. We formalize the problem

as follows.

Let y(t) be the state of the human arm in its own, unknown state space Y as a function

of time, and let ẏ ∈ γ(y) be its uncertain dynamics, again unknown. Let A(y) ⊆ R
3 be the

subset of space occupied by the arm in state y and Ry(t) be the reachable set (see (1)) of the

arm.

Definition 4.1 (Exact Reachable Occupancy) The exact reachable occupancy at a time

t = r is:

eΓ(r) = {A(y)|y ∈ Ry(t)}

As we can only obtain knowledge of the state of the robot from sensors, we define a

sensor reading s ∈ S ∈ R
n, where S is the sensor space, i.e. the space of all possible sensor

readings. We fit s to a simplified kinematic model with joint positions q ∈ Q ⊆ R
n and
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velocities q̇ ∈ ξ ⊆ R
n we define the state of the kinematic chain x = [q⊤, q̇⊤]⊤ and state space

X = Q× ξ. We define further the inverse kinematic map and the occupancy map:

mapIK(s) : S → P(X ),

mapOCC(x) : X → P(R
3),

where P(R3),P(X) are the power sets of R3,X respectively. The former mapping gives the

set of states of the model possibly represented by some sensor data s, whereas the latter

mapping gives the set of points in R
3 possibly occupied by any human arm for a given state

x of the model, accounting for variations in arm length and shape. Offline, we obtain the

dynamics ẋ(t) ∈ f(x(t)) from analysis of data so that online we can compute the reachable

set of x, Rx(t) from R(0) = mapIK(s), and define the reachable occupancy:

Definition 4.2 (Reachable Occupancy) The reachable occupancy at a time t = r is:

Γ(r) ⊇ {mapOCC(x)|x ∈ Rx(r)}

Our task is

• to find Γ(r) ⊇ eΓ(r),

• to compute Γ(r) from s in a time faster than r,

• to keep Γ(r) as small as possible.

We work with t in the range of 10-30ms, because after this Γ(t) grows to cover the entire

workspace. This is intended to interface with a safety controller as proposed in UnCoVerCPS

and applied by the authors to human-robot interaction in UnCoVerCPS. We now show how

the data was collected.

4.3 Data Collection

The prediction bases its validity on collecting extreme movement data from subjects of both

genders with a wide range of ages and physical activity levels; this data is used for obtaining

the uncertain model in advance.

Motion capture data was collected from 38 persons, 12 female and 26 male, ranging in

age between 18 and 49 with a median age of 24. 50% did 3 or more hours of sport a week.

The movements captured were designed to optimally cover the entire workspace of the human

arm. The subjects were required to perform the following movements as fast as possible:
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Figure 16: From left to right: Positions A, B, C, D and E.

• Punch to the front then recover to position E.

• Punch to the front, ending in position A.

• Position A to position B, elbow allowed to bend.

• Position A to position B, elbow not allowed to bend.

• Position C to position D, via position A.

• Position C to position D, via position B.

We capture the data using a 6-Camera Vicon Motion Capture system at a rate of 120Hz

and filtered it using a 4th order Butterworth filter as in [53] to remove noise. The choice

of filter was validated by the fact that the elbow joint accelerations agreed well with those

measured by [63] using a camera. A higher order filter would have attenuated the joint

accelerations whereas a lower order filter was found not to remove noise sufficiently. Inverse

kinematics was then applied to the data sets to find the joint positions at each time step.

The data is then fitted to a kinematic model in order to obtain parameters for this model,

such as link length, maximum joint speeds and maximum accelerations.

4.4 Kinematic Model

In this section we present a familiar 4-degree-of-freedom (4-DOF) kinematic model of the

human arm, which we then simplify to a 3-degree-of-freedom (3-DOF) model to reduce di-

mensionality and therefore computation time. We begin at the shoulder complex, which is

composed of four joints, illustrated in Fig. 17. Of these, the most important is the ball-and-

socket Gleno-humeral (GH) joint. The others have a limited range of motion and, in all cases,

cause movement of the origin and orientation of the GH joint.

From the GH joint to the hand there are seven degrees of freedom, as shown in Fig. 18.

The GH joint has three degrees of freedom and can be modeled by the 3 revolute joints 1–3.

The elbow joint has two degrees of freedom: flexion of the forearm (radius and ulna, joint 4)
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Figure 17: The shoulder complex. SC: Sternoclavicular joint, AC: Acromioclavicular joint, ST:

Scapulothoracic joint, GH: Glenohumeral joint. All but the latter have limited motion; we focus

attention on the GH joint, which is a ball-and-socket joint.

and rotation of the humerus along its own axis (joint 5). The latter does not greatly affect

the occupancy of the forearm and hand, and neither do the joints in the wrist (joints 6 and

7) and the fingers. The occupancy resulting from movement of joints 5-7 through their entire

range can be over-approximated by a static set. Therefore, there are only four degrees of

freedom which determine occupancy of the arm.

1

6

7 3

Forearm

U
p

p
er

 A
rm

Figure 18: Left: seven degree of freedom model of human arm. Right: simplified four degree of

freedom model of human arm excluding wrist and hand movement.

4.4.1 4-Degree-of-Freedom Model

A simplified kinematic model of the human arm is presented in [64] to calculate the workspace

of the human arm. A similar model, identical except for the initial orientation of coordinate

system is presented in [41]. In both cases, four degrees of freedom are used; the models differ

only in terms of the initial orientation of the first joint.

In our model, the base coordinate system is defined by the four markers RSHO, CLAV,

C7 and LSHO, as shown in Fig 19, and we used RELB and the midpoint of RWRA and

RWRB for the inverse kinematics. We choose the base coordinate system such that the first

joint corresponds approximately to adduction, the second to flexion, the third to rotation and
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Figure 19: Markers and local base coordinate system. The marker CLAV is positioned at the base

of the sternum between the two clavicles on the anterior of the torso. The markers CLAV, C7, LSHO

and RSHO define the base coordinate system of the shoulder.

the fourth to elbow flexion. However, if the elbow approaches or passes close to the axis of

joint 1 during a movement, this is a singularity in the workspace and the inverse kinematics

registers large changes of the angle of joint 1 in the abstraction over a short time (see Fig. 20);

the elbow movement is not redundant, as there are 2 rotational degrees of freedom and a two-

dimensional workspace (the surface of a sphere with radius the length of the link), therefore

the inverse kinematics yields an unique solution. As will be shown in Sec. 4.5, we wish to

tightly bound the possible range of accelerations in the joint space, therefore we would like

to ensure that the elbow cannot pass close to the axis of the first joint. As the axis of joint

1 can be freely chosen, we set it such that it does not intersect the workspace, as shown in

Fig. 21. Therefore the singularity will not be reached in any movement of the arm.

By setting the origin at the shoulder marker, the shoulder rhythm, i.e. the movement

and interdependencies of the other joints in the shoulder complex, as described in [65] is not

considered as part of the arm movement.

We call the section of the kinematic chain from the shoulder to the elbow the upper

arm and the section of kinematic chain from the elbow to the hand the forearm, as shown

in Fig. 18. The position of the upper arm in the base coordinate system K0 is defined by

joints q1, q2 and the length of the first link. The position of the forearm is defined by the

joints q1, q2, q3 and q4, and the length of the first and second links, although the position

of the forearm relative to the coordinate system at the end of the upper arm, K1 is only

defined by q3, q4, and the length of the second link. As such, the entire kinematic chain can

be considered to be two kinematic chains of two rotational joints followed by a link, joined

together, identical except for the length of the links. This decomposition into two sub-chains
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Figure 20: The effect of the orientation of the joint axis on the joint accelerations. The x-axis is

the data sample and the y-axis is simultaneously the first joint position in rad × 102 (red trace) and

acceleration in rad/sec2 (green trace). Left: axis is oriented as in Fig. 21a, and the movement of the

elbow passes very close to the joint axis, resulting in high accelerations. Right: axis is oriented as in

Fig. 21b; lower accelerations are seen.

is useful for computation of the potential occupancies, as discussed later in Sec. 4.6.

4.4.2 3-Degree-of-Freedom Model

The 4-DOF model can be simplified further, to reduce complexity and therefore computa-

tion time. The relationship between the 3rd and 4th joints is such that when the elbow is

outstretched or bent in on itself (|q4| ≈
π
2 ), extremely large accelerations can be observed

in rotation (q̈3 is large), which is not the case when the elbow is at right angles (q4 ≈ 0),

see Fig. 22. This is to be expected as in the latter case, the moment of inertia around the

rotation axis (i.e. around the upper arm) is high, and in the former case it is negligible.

However, high accelerations and high velocities when |q4| ≈
π
2 do not lead to large changes

in occupancy; the change in occupancy due to the third joint is therefore highly dependent

on q4. For this reason, it makes sense to merge the third and fourth joints into a single,

prismatic joint: the arm is enclosed in a cylinder defined by the elbow and the hand, which

has two rotational degrees of freedom around the shoulder. This is shown in Fig. 23.

Proposition 4.1 The length and radius of the cylinder depend on the elbow flexion angle q4

and the forearm and upper arm lengths lf and lh, thus:
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x
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z
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Figure 21: The workspace of the elbow, i.e. the possible positions of the elbow according to our

data, and the axis of joint 1 in red. On the left, (a) the axis intersects the workspace, which could

cause high q̈1 when the upper arm aligns with the axis. On the right, (b), we rotate the axis so that

it does not intersect the workspace and thus avoid high joint accelerations.

r =
lf lhsin(q4)

√

l2f + 4l2h − 4lf lhcos(q4)
(6)

l =







√

l2h + l2f − 2l2hlfcos(q4)− r
2 q4 > q4a

√

l2h − r
2 q4 ≤ q4a

(7)

q4a is the angle at which the maximum radius and the minimum length occur, and is

calculated so:

q4a = tan−1(
lf
2lh

) (8)

The maximum radius is 1
2 lf .

EEE

OOO

q4
q4

q4

α
M

H

H

H

LL

L

N

Figure 24

Proof 2 In Fig. 24, O, E and H are the positions of the shoulder, elbow and hand respec-

tively; the figure shows the section of the cylinder along the plane OEH. Let N be the base

of the perpendicular from E onto OL. We wish to determine the cylinder length |OL| and
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Figure 22: q̈3 plotted against q4 during one movement. The range at q4 = 0 and that at q4 = −π
2

are very different, but the large accelerations and velocities at the latter do not contribute to great

changes in occupancy.

A B
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Shoulder

Elbow

Elbow

Hand

Hand

Figure 23: Left: Enclosing the arm with a cylinder. The hand lies on the intersection of the base of

the cylinder and the side. The elbow lies on the side. The elbow joint angle determines length and

radius of the cylinder, though for simplification, we always enclose the arm in the maximum radius

cylinder.

radius |EN |. Let M be the intersection of OL and EH; M is then the midpoint of EH as

LH and EN are both radii therefore HLM and ENM are similar. Knowing |OE| = lH ,

|EM | = lF
2 and q4 we obtain |OM | by the cosine rule:

|OM | =

√

l2H +
l2F
4
− lH lF cos(q4)

From the sine rule, we see that:

sin(α) =
sin(q4)

|OM |
|EM |

We now obtain |EN | = |OE|sin(α) = r; substituting we find Eq. 6. We see that this is a
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maximum in the middle diagram of Fig. 24, where α > π
2 ; here q4 = tan−1(

lf
2lh

) as in Eq. 8

In the case that α < π
2 , as in the left diagram of Fig. 24, the length is obtained from the

right angled triangle OLH. |OH| is obtained from the cosine rule on triangle OEH, yielding:

|OH| =
√

l2H + l2F − 2lH lF cos(q4)

Pythagoras’ Theorem then yields |OL| as in the top part of Eq. 7. In the case that α > π
2 , as

in the right diagram of Fig. 24, the triangle OEM determines the length, from which follows

the bottom part of Eq. 7.

The simplest option in terms of representation is to enclose cylinders of smaller radius in

the maximum. Therefore, the forearm movement is reduced to movement of a prismatic joint

at the end of a kinematic chain as in Fig. 28.

4.5 Dynamic Model

As mentioned in Sec. 4.2, the arm is abstracted to a kinematic chain. The state x of a

kinematic chain is [q⊤, q̇⊤]⊤, where q is the vector of joint positions and q̇ is the vector of

joint velocities. We discuss two models for determining the dynamics of the kinematic chain

in Sec. 4.4 from the motion data gathered as described in Sec. 4.3 and therefore the reachable

sets of the model – one model is torque-based and the other is acceleration-based. Finally,

we motivate the use of the acceleration-based model.

4.5.1 Torque Model

Holzbaur et al. [51] collate the maximum muscle forces from a variety of studies for use in their

DHM, thus it would be intuitive to calculate the range of torques of each joint as the sum of

the range of contributions from each muscle, if the moment arms were known. Alternatively,

Otis et al. [66] measure the maximum flexion, abduction and rotation torques for a range of

shoulder joint positions and angular velocities, and Amis et al. [63] study the forces on the

arm during maximal elbow movements, which is even more directly applicable to our model.

Besides the literature mentioned, there is ample existing research into the maximal torques

in the human arm on which to base a model. The kinematics of a serial-link manipulator can

be described as:

τ = H(q)q̈+ C(q, q̇)q̇+ F (q̇) + g(q, x) + τext
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where q is the vector of joint positions, H is the inertia matrix, C is the matrix of Coriolis

and centrifugal forces, F is the friction vector and g is the gravitational vector as a function

of the joint positions and orientation x. τ is vector of the total torque on the joints and τext

is the vector of external torques, including those from the movement of the base relative to

the world. Calculating the reachable set of such a system presents several challenges:

1. Non-constant gravity vector – the base coordinate system of the arm is not fixed in

space, it is attached to the shoulder and its orientation moves with that of the shoulder,

as shown in Fig. 19. As such, the direction of gravity is not constant with respect to

the base coordinate frame of the arm.

2. Presence of unknown external torques induced by the movement of the shoulder relative

to the world.

3. Unknown mass and inertia parameters of the arm – these can be accounted for, but

current methods e.g. [67] are calculation-heavy and introduce additional uncertainties

in the over-approximation, thus would not be suitable for real-time calculation.

4. The system is highly nonlinear and would require linearization at every time step; this

also leads to larger over-approximation and computation times that are not real-time-

capable with current methods [67,68].

4.5.2 Acceleration Model

We present a model where acceleration is a linear function of the state, i.e. the acceleration

of the ith joint q̈i = a⊤q + b⊤q̇ + u for some coefficient vectors a and b and an uncertain

u ∈ [umin, umax]. A model ignoring the nonlinear effects of dynamic parameters may suffer

from greater over-approximation compared to a torque-based model, but will be quicker to

calculate; fast methods exist for calculating reachable sets of linear systems [69]. We define

the Minkowski sum.

Definition 4.3 Minkowski Sum

The Minkowski sum ⊕ is defined on two sets A and B so:

A⊕B = {a+ b | a ∈ A, b ∈ B}

When considering uncertain inputs, the system can be described by a set of linear differ-

ential inclusions of the form:
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[0, 0]

[umax, umin]



 , (9)

where C and D are matrices of coefficients to be determined; I is an identity matrix of proper

dimension.

An acceleration model which exploits the correlation between joint position or velocity

and range of accelerations would be preferable, as this can combine the accuracy and insight

offered by the torque model with the speed of calculation of the linear model. The dependence

of joint torque on joint angle is well-known and studied for the single and multi-joint cases (e.g.

[70]). The dependency in a single joint is due to muscle physiology and several models exist

[71] whereas multi-joint interdependencies could be due to muscle-on-muscle impingement [72]

and intermuscular force transmission, among other reasons [70]. From observation of our data,

relationships between joint positions and accelerations can be observed, but less so between

joint velocities and accelerations. The correlations over the entire data set can be seen in

Table. 5 and an example of dependency from one movement can be seen in Fig. 25.

Table 5: Correlation between joint positions and velocities, and acceleration for 4-DOF Model

r2 q1 q2 q3 q4 q̇1 q̇2 q̇3 q̇4

q̈1 -0.12 -0.00 -0.02 0.03 -0.00 0.04 -0.00 0.06

q̈2 -0.00 -0.27 0.08 -0.02 -0.09 0.00 -0.07 0.10

q̈3 -0.02 0.02 -0.16 0.00 0.00 0.02 0.00 -0.03

q̈4 0.06 -0.02 0.00 -0.20 -0.11 -0.07 0.06 -0.00

Furthermore, having modeled the arm very simply as two rods with even mass distribution,

we find the Coriolis and centrifugal terms to be small in comparison to inertia terms. We

therefore disregard dependency on the joint velocities, set the lower right sub-matrix D of

the Jacobian matrix in (9) to a matrix of zeros. Note that this is still over-approximative,

simply independent of q̇, as the interval [umax, umin] must still account for all accelerations

observed in the data.

We populate the C sub-matrix. At our disposal we have the motion capture data from

Sec. 4.3, from which we can extract, at all points in time, the acceleration of each joint q̈i(t)

and the corresponding joint positions q(t). The accelerations must be within the interval in
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q̈4
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Figure 25: Dependence of q̈4 (y-axis) on q4 (x-axis top figure) and q̇4 (x-axis bottom figure) for a

typical movement. The top figure exhibits negative linear correlation whereas there is no correlation

in the bottom figure.

(9), i.e.

q̈i(t) ∈

j=n
∑

j=1

Ci,jqj(t)⊕ [umin,i, umax,i], (10)

where [umin,i, umax,i] is the ith entry of [umin, umax]. We wish to determine the coefficient

values of C such that the range of the interval vector [umax, umin] is as narrow as possible,

as a smaller range of accelerations leads to a slower-growing reachable set. One pathological

solution is to set all coefficients to zero, meaning that [umax,i, umin,i] is the interval of the

maximum and minimum accelerations over the entire data set; this is not the smallest interval

possible. To determine the optimal solution we first recall the definition of hyperplane and

half-space:

Definition 4.4 Hyperplane [73, p. 2] A hyperplane is a set which may be defined as H =

{x ∈ R
k|n⊤x = α} for suitable n ∈ R

k (the normal vector) and α ∈ R.

Observe that this is a generalization of the plane to k-dimensional space.

Definition 4.5 Half-space [73, p. 2] An open half-space is defined as H = {x ∈ R
k|n⊤x <

α}. A closed half-space is defined as H = {x ∈ R
k|n⊤x ≤ α}.

Let Ci be the i
th row of C and let k be the number of joints, i.e. the dimension of q. We

examine the dependence of all joint positions on only one joint acceleration, and we do this

for each joint i ∈ {1, ...k} therefore we construct k data sets Si, i ∈ {1, ...k}, where the data

points are values of [q⊤, q̈i]
⊤ at every point in time over the entire motion capture data. If
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si ∈ R
k+1 is an element of Si, it is a vector of [q⊤, q̈i]

⊤ at some point in time. From these

data sets, our goal is to find C such that umax − umin is minimized.

We can rearrange Eq. (10) to define

umax,i = max{
[

−Ci , 1
]

si|si ∈ Si},

umin,i = min{
[

−Ci , 1
]

si|si ∈ Si}.
(11)

We observe that Eq. (11) is equivalent to the condition that all points lie in the intersection

of the two closed half-spaces,

Hu = { z | [−Ci , 1 ](z) ≤ umax,i},

Hl = { z | [−Ci , 1 ](z) ≥ umin,i}.

Lemma 4.1 Given a set of points S, si ∈ R
k+1. Where c ∈ R

k is a vector we define the

function:

m1(c) = max{[−c⊤ , 1 ]si|si ∈ S}

m2(c) = min{[−c⊤ , 1 ]si|si ∈ S}

m(c) = |m1(c)−m2(c)|

and the hyperplanes:

H1(c) = { z | [−c
⊤ , 1 ] z = m1(c)}

H2(c) = { z | [−c
⊤ , 1 ] z = m2(c)}

If there are at least k + 1 points in S, a necessary condition for m(c) to be a strict

minimum over c is that there exist two nonempty sets V1 = {s|s ∈ S, s ∈ H1(c)} and

V2 = {s|s ∈ S, s ∈ H2(c)} and |V1|+ |V2| ≥ k + 1.

The proof is omitted for brevity. In order to find the global minimum, we implement

Alg. 3: in lines 2 and 3, we construct the data sets Si for each joint acceleration, and then

the convex hull CH(Si); since points inside the convex hull can never be boundary points of

Si, they can never lie on the hyperplanes and we can disregard them from our search. In line

4 we loop through all sets of i points in CH(Si) which define a bounding i-dimensional space

of the convex hull, and in line 5 we find the complementary k − i+ 1-dimensional spaces on

CH(Si); together, these constitute k + 1 points on the boundary of Si. For example in 3-D,

we take parallel hyperplanes defined by pairs of line segments on CH(Si), and then parallel

hyperplanes defined each by one face and one point.
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We check that these k + 1 points are unique in line 6, and then find the hyperplanes

defined by these points in line 7. In lines 8-11 we find [umin,i, umax,i] and update the optimal

bounding hyperplanes if the new value is a minimum. We can therefore populate the C

matrix in Eq. (9) with the normals of the k pairs of hyperplanes.

Algorithm 3 Find Minimum Bounding Hyperplanes

Input: Sample points of q, q̈ in k dimensions

Output: [umin,i, umax,i], normals to hyperplanes C

1: find convex hull of points

2: for i < k do

3: find Si and CH(Si)

4: for all i-spaces in CH(Si) do

5: for all k + 1− i-spaces in CH(Si) do

6: if all k + 1 points unique then

7: Evaluate hyperplanes defined by these points

8: Calculate [umin,i, umax,i]

9: if [umin,i, umax,i] is new minimum then

10: Update optimal c, [umin,i, umax,i]

11: end if

12: end if

13: end for

14: end for

15: end for

This exhaustive method quickly becomes impractical in higher-dimensional spaces, so

for the 4-DOF model, only the relationship between acceleration and links 2, 3 and 4 are

evaluated, as these exhibit the highest correlations, see Fig. 5. In the 3-DOF model the

relationship between acceleration and all joints is evaluated. More scalable methods exist,

e.g. [62] for finding sub-optimal solutions, however, as this computation is offline we have no

time constraints, thus finding the global minimum is worth the extra computation time to

reduce the size of [umin, umax] as much as possible.

Methods for determining reachable sets of a linear first order system of differential inclu-

sions for any time interval, given an initial set, are well known and fast [69]. We are now

able to determine the reachable set of the kinematic chain given only the initial set of states,

found online by inverse kinematics, and the dynamics, determined in advance.
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4.6 Representation in Space

Representing a reachable set in the joint space presents challenges due to the highly nonlinear

forward kinematics of the model as well as uncertainty in the length of the links. We address

these challenges by splitting the 4-DOF model into two sub-chains of 2 rotational degrees of

freedom each, upper arm and forearm, as described in Sec. 4.4.1. These chains appear as

shown in Fig. 27 and are identical except for the length of the link. We find polyhedra that

enclose the potential occupancy of upper arm and forearm in their own coordinate systems,

and from these find another polyhedron that encloses the forearm in the coordinate system

of the shoulder accounting for uncertainty in the position and orientation of the elbow as in

Fig. 26. The 3-DOF model has only 2 rotational degrees of freedom and can be enclosed in

one polyhedron. For clarity, ap means the vector (or set of vectors) of the point (or set of

points) p in coordinate system Ka.

eF

sF

sHsH

Figure 26: Occupancies of the upper arm and forearm; left: calculated apart in their own coordinate

systems, right: joined together to the occupancy of the entire arm
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Figure 27: The kinematics of one subchain

The rest of this section describes and proves the conservativeness of the method for

enclosing the arm in convex polyhedra. In Sec. 4.6.1 we detail assumptions made on the

link shape and examine the forward kinematics of the sub-chain, showing that the possible

endpoints of the link lie within an area on the surface of a sphere with the origin at the

base of the sub-chain. In Sec. 4.6.2 and 4.6.3 we show in detail how the occupancy of a

single subchain is enclosed, given a reachable set of joint angles. In Sec. 4.6.4 we show how

this is extended to two subchains in the case of the 4-DOF model, and how to account for

uncertainty in the length of the links. Finally, in Sec. 4.6.5 and 4.6.6 we present alternative
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methods of representation for comparison in Sec. 4.7

4.6.1 Forward Kinematics and Definition of Enclosing Polytope

We examine the forward kinematics of the subchain and define the problem of finding an

enclosing polytope. The following definitions are useful in this and the next section.

A polyhedron that is closed (i.e. it contains its boundaries) and bounded (i.e., its volume

is finite and contains no rays) can be called a polytope. A polytope P is the nonempty

intersection of a finite set S := {S1, . . . , Sq} of halfspaces:

Definition 4.6 Halfspace Representation of Polytope For q halfspaces, a convex

polytope P is the set:

P =
{

x ∈ R
n
∣

∣Cx ≤ d
}

,

where C ∈ R
q×n, d ∈ R

q×1.

Each polytope can also be defined by the convex hull of a finite set of vertices vi ∈ R
n:

Definition 4.7 Vertex Representation of Polytope For r vertices vi ∈ R
n, a convex

polytope P is the set P = CH(v1, . . . , vr), with

CH(v1, . . . , vr)=
{

r
∑

i=1

αivi
∣

∣αi∈ R≥0,

r
∑

i=1

αi=1
}

.

We use the following notation: a closed interval between a1, a2 ∈ R is denoted [a1, a2]; an

open interval (a1, a2). The closed line segment between two points p1,p2 ∈ R
k is 〈p1,p2〉.

Define the function g to be the forward kinematic transformation applied to a point 1p

in the end-effector coordinate system K1 resulting in 0p in the base coordinate system K0:

g(θ, φ, l, 1p) = 0p,

where θ is the first joint angle, φ is the second joint angle and l is the length of the link. This

transformation is illustrated in Fig. 28.

x1

x1

y1

y1

z1

z1

x0

y0z0

θ

φ 0p

1p 1pl

Figure 28: The transformation g. Where 1p is a vector in the end-effector coordinate system K1,

(right) the transformation g(θ, φ, l, 1p) is the vector now in the base coordinate system K0 (left).
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Definition 4.8 Enclosing Polytope

Given a kinematic subchain as in Fig. 27 with uncertain joint angles θ ∈ [θmin, θmax] and

φ ∈ [φmin, φmax], and cylindrical link of uncertain length lmin ≤ l ≤ lmax and radius r, an

enclosing polytope is a polytope P with respect to K0 which encloses the possible occupancy

of the link, i.e.

P ⊇























































g(θ, φ, l,p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ ∈ [θmin, θmax],

φ ∈ [φmin, φmax],

l ∈ [0, lmax],

p ∈ r[cos(α), sin(α), 0]⊤,

α ∈ [−π, π],

r ∈ [0, rmax]























































(12)

The volume of the link is a cylinder of length l and radius r. This can be considered to

be the Minkowski sum (see Def. 4.3) of a line segment of length l and a circle of radius r on

a plane normal to that line. We will first consider the link shape to be a line segment and

then extend the polytope obtained at the end of the algorithm accordingly to account for the

radius of the cylinder.

This leads to the following simplification: if the start and end-points of a line segment are

enclosed in a convex shape, the entire segment between them is enclosed, by the definition

of convexity. The start point of the link is at the origin, thus we need only to enclose the

endpoint of the link, g(θ, φ, lmax,p), and the origin.

lh,max

lh,min

Figure 29: Smaller upper arm lengths lh,min are contained within the reachable occupancy calculated

from the maximum upper arm length lh,max.

We additionally account for parametric uncertainty in the length, as a link of length

lmin < lmax will be enclosed by the occupancy of a link of length lmax, see Fig. 29. In the

following sections, we will assume the arguments l and 1p to be fixed values, and define

gocc = {g(θ, φ, l,
1p)|θ ∈ [θmin, θmax], φ ∈ [φmin, φmax]}

Eq. 12 then becomes:
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P ⊇ CH(gocc , 0) ⊕ Y (r),

where Y (r) is the over-approximation to be added due to the radius of the cylinder. From

Fig. 28 we observe that |0p| = |[0, 0, l]⊤ + 1p|, which is fixed, therefore all values of gocc lie

on the surface of a sphere S of radius |[0, 0, l]⊤ + 1p|. In the following section we show how

to construct a polytope enclosing this area on the surface of the sphere as well as the origin.

4.6.2 Enclosing a single link

In this section we show how gocc can be projected to a plane and bounded by a closed curve

k′ in the plane, then this curve projected back to a curve k on the sphere S to bound gocc

on the surface of S. We then show how k can be extended to a polytope bounding both gocc

and the origin of S. We define the circle of a sphere and the spherical polygon:

Definition 4.9 Circle of a Sphere [74]:

The section of the surface of a sphere g made by any plane is called a circle of a sphere.

If the plane passes through the centre of the sphere, this circle G is called a great circle (of

a sphere), see Fig. 30; an arc of a great circle is called a geodesic. Analogously to lines,

the geodesic between two points on a sphere s1 and s2 is denoted 〈s1, s2〉

The axis z of any circle of a sphere is that diameter of the sphere which is perpendicular

to the plane of the circle. The extremities of the axis are called the poles y1 and y2.

y1

y2

z

O

g

G

Figure 30: A circle of a sphere g and a great circle G with axis z and poles y1 and y2.

Definition 4.10 Spherical Polygon [74]:

A spherical polygon is a closed curve on the surface of a sphere formed by two or more

arcs of great circles (geodesics). We call a spherical polygon convex if, for any two points

inside the polygon, the polygon contains (at least) one geodesic between these points [75].

The union of rays drawn from the origin O of the sphere through the points of the spherical

polygon k constitutes the corresponding polyhedral angle K [75], see Fig. 31. If the spherical

polygon is convex, the polyhedral angle is equivalently the intersection of the halfspaces defined

by the arcs of the spherical polygon.
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K

O

k

Figure 31: Spherical polygon k and corresponding polyhedral angle K.

Because it is easier to work in two dimensions than three, we use the gnomonic projection,

which defines a bijection between the surface of a closed halfsphere to the projective plane as

explained in [76, p. 145]. The projective plane PR
2 is the Euclidean plane R

2 extended by a

line at infinity representing the projection of the edge of the halfsphere.

Definition 4.11 Gnomonic Projection [77]

The gnomonic projection is a projection of points on the surface of a sphere S from the

origin O of the sphere onto the projective plane P at a tangent to the sphere at y. Where

(ρ, ϑ, ψ) are the spherical coordinates (radius, azimuth and polar angle) of a point p on S, the

polar coordinates (r, ϕ) of p′ in the projective plane are:

r =
ρ

tan(ψ)

ϕ = ϑ

(13)

This has the following properties:

1. any great circles G is projected to a straight line G′,

2. circles a of S with a pole of y are projected to circles a′ centered on y′,

3. circles b of S with a pole on the great circle parallel to P are projected to hyperbolae b′,

4. only one hemisphere can be projected onto the plane.

w

O

G′

G

P
a

b
a′

b′

y

y′
z

p

p′

Figure 32: Circles of S in the gnomonic projection.

As great circles are defined by lines in the gnomonic projection, for any two points a

and b and their corresponding projections a′ and b′, the geodesic 〈a, b〉 corresponds to the
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line segment 〈a′, b′〉 and vice-versa, so a convex polygon on the plane is a convex spherical

polygon on S.

Our method will be such: after projecting gocc to a plane, we find a convex polygon

bounding it, project this back to a convex spherical polygon on the sphere and find the

corresponding polyhedral angle, which by definition bounds gocc and the origin. We then

intersect this with hyperplanes tangent to the sphere to form a bounded polyhedron.

We now find g′occ, the projection of gocc onto a suitable plane. Given a point 0a =

g(θ, φ, l, 1p) on the sphere S of radius |0p|, the point 0b = g(θ + ∆θ, φ, l, 1p) is 0a rotated

around the axis of joint 1 by ∆θ and the point 0c = g(θ, φ +∆φ, l, 1p) is 0a rotated around

the axis of joint 2 by ∆φ. Therefore the locus of points:

U(θ) = {g(θ, φ, l,p)|φ ∈ [φmin, φmax]}

is the arc of a circle of S with the axis of joint 2, which is perpendicular to the axis of joint

1, and

gocc ={g(θ, φ, l,
1p)|θ ∈ [θmin, θmax], φ ∈ [φmin, φmax]}

={U(θ)|θ ∈ [θmin, θmax]}

is a union of such arcs of circles of S rotated around the axis of joint 1 by an angle θ ∈

[θmax, θmin]

We take the gnomonic projection of U(θ) onto a plane perpendicular to the first joint axis,

and obtain U ′(θ), which is an arc of a hyperbola by condition 3 of Def. 4.11; this is illustrated

in Fig. 33. We work in polar coordinates in the plane, i.e. every point u ∈ U ′(θ) can be ex-

pressed as a radius and angle, u = (r, ϕ). We define the functions maxϕ(U
′(θ)),minϕ(U

′(θ)),

and minr(U
′(θ)),maxr(U

′(θ)), which return the minimum and maximum values of ϕ and r

in U ′(θ), respectively.

By Eq. 13, U ′(θ +∆θ) = {u+ (0,∆θ)|u ∈ U ′(θ)}, i.e. a rotation ∆θ on the sphere leads

to a rotation ∆ϕ in the projection. Therefore

maxϕ({U
′(θ)|θ ∈ [θmin, θmax]}) = maxϕ(U

′(θmax))

minϕ({U
′(θ)|θ ∈ [θmin, θmax]}) = minϕ(U

′(θmin)),

and g′occ is bound by the level sets ϕ = maxϕ(U
′(θmax)) and ϕ = minϕ(U

′(θmin)).

Furthermore, since U ′(θ) is independent of r, g′occ is also bound (without loss of generality)

by the level sets r = minr(U
′(θmin)) and r = maxr(U

′(θmin)).

Deliverable D2.1 – Report on Behaviour Prediction for Cyber-Physical Sys-
tems

45 of 66



4 SET-BASED PREDICTION OF HUMANS FOR HUMAN-ROBOT COEXISTENCE
AND COLLABORATION

ϕ = maxϕ(U
′(θmax))

ϕ = minϕ(U
′(θmin))

r = minr(U
′(θmin))

r = maxr(U
′(θmin))

U ′(θmax)

U ′(θmin)

U(θmax)

U(θmin)

Figure 33: Illustration of gocc (right) and projection g′occ (left)

Having determined the shape of g′occ, we proceed to bound it with a convex polygon.

4.6.3 Obtaining the Enclosing Polytope

The construction of the enclosing polytope is detailed in Alg. 4. In constructing the polygon

in P we must consider three cases. We call the equator that great circle which is perpendicular

to the axis of joint 1, and we take hemisphere to mean a closed hemisphere, i.e. one half of

the sphere bisected by the equator, including the equator.

Algorithm 4 enclosingPolytope(Θ,Φ, l,p, r)

Input: interval Φ, interval Θ, link length lmax, vector p, cylinder radius rmax

Output: Polytope(s) enclosing {g(φ, θ, l,p)|φ ∈ φ, θ ∈ θ}

1: if case 1 then

2: Find θmax, θmin in projection

3: Find rmax, rmin in projection, intersection points

4: else

5: Find θasy {WLOG, ϕ+}

6: Find θmin,1 and θmin,2 in projection

7: Find rmax,1 and rmax,2 in projection and intersection points

8: end if

9: if θmax − θmin > π then

10: Find T1 and T2 and convex hull

11: end if

12: Project intersection points back to sphere and construct spherical angle {These are normal

vectors}

13: Bound with hyperplanes tangent to surface of S

14: Enlarge to account for radius of cylinder
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p1

p2
p3

p4

Figure 34: Case 1: gocc lies on one hemisphere

Case 1: gocc lies on one hemisphere In the case that gocc lies entirely in one hemisphere,

g′occ lies entirely on the projective plane tangent at the pole of that hemisphere. The lines

ϕ = maxϕ(U
′(θmax)), ϕ = minϕ(U

′(θmin)), r = minr(U
′(θmin)) and r = maxr(U

′(θmin)) form

an annular segment, which can be enclosed in a convex quadrilateral (see Fig. 34) the vertices

of which can be calculated and projected back to the sphere. This is performed in lines 2-3

of Alg. 4.

ϕ = ϕasy

ϕ = ϕasy

ϕ = minϕ(U
′(θmin)1

ϕ = minϕ(U
′(θmin)2

ϕ = minϕ(U
′(θmin)2

p1

p2

p4

p3

equator

S1

S2

Figure 35: Case 2: gocc lies on both hemispheres

Case 2: gocc lies on both hemispheres In the case that gocc is bisected by the equator

(lines 4-7 of Alg. 4), we split the arc U(θ) over the two hemispheres S1 and S2 into into

U1(θ) ⊆ S1 and U2(θ) ⊆ S2, so that gocc,1 = {U(θ)1|θ ∈ [θmin, θmax]} and gocc,2 = {U(θ)2|θ ∈

[θmin, θmax]}, and project onto planes at the y1 and y2 poles as shown in Fig 35. In the

respective planes, we observe that the hyperbolae U ′(θ)i extend to intersect the line at infinity

(recall that we work in the projective plane) which corresponds to the equator on S. Without

loss of generality, the hyperbola extends to infinity on the side of positive ϕ as in Fig 35. Let

ϕ = ϕasy be the asymptote to the hyperbola U ′(θmax); this bounds gocc on the positive ϕ

side.

ϕasy can be obtained from the intersection of U(θmax) and the equator. To bound ϕ on
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the negative side, we take:

ϕ = min(minϕ(U
′(θmin)2),minϕ(U

′(θmin)1)). (14)

Finally, r = minr(U
′
1(θmin)) and r = minr(U

′
2(θmin)) are calculated; the intersection points

with ϕ = ϕasy, p
′
1 and p′2, and with (14), p′4 and p′3, are calculated. Lines l1 and l2 passing

through these points bound gocc on the side away from each pole y1 and y2. The intersections

of these lines are projected back to S to define the corners of the spherical polygon k.

Figure 36: Case 3: convex hull of gocc intersects the pole

y′
u1(θmin)

u2(θmin)

T1

T2

Figure 37: Constructing a convex polygon in case 3

Case 3: maxϕ(U ′(θmax))−minϕ(U
′(θmin)) > π Finally, in either of these cases, the angle

maxϕ(U ′(θmax)) −minϕ(U
′(θmin)) may be greater than π, lines 9-11 of Alg. 4. In this case

the approach in case 1 and 2 no longer yields a convex polygon. We therefore bound each

U ′(θ) in a triangle as shown in Fig. 37, with vertices u1(θ), u2(θ) and y
′. u1(θ) and u2(θ) lie

on arcs around y′ subtending θmax − θmin which may be bounded by triangles T1 and T2.

Lemma 4.2 let Z = {z1, z2, ...zn} be a set of points and P = {℘1, ℘2, ...℘n} be a set of

polytopes. Then

∀i ∈ {1, ...n}, zi ∈ ℘i =⇒ CH(Z) ⊆ CH(P)

Proof 3 If ∀i, zi ∈ ℘i ⊆ CH(P), then Z ⊆ CH(P). From [73, p. 14], CH(Z) is the

intersection of all convex sets containing Z, and CH(P) is such a convex set. Therefore

CH(Z) ⊆ CH(P).
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Since U(θ) ⊆ CH(u1(θ), u2(θ), y
′) and u1(θ) ⊆ T1, u2(θ) ⊆ T2, by Lem. 4.2 CH(u1(θ), u2(θ), y

′) ⊆

CH(T1, T2, y
′). The convex hull of two triangles and a point is straightforward to calculate;

this bounds gocc.

Having obtained a spherical polygon k and therefore a polyhedral angle K (line 12 of

Alg. 4), we must bound K (which is unbounded) to obtain a polytope. In line 13 of Alg. 4

we intersect K with the halfspaces tangent to S; we prove that this is now bounded:

Lemma 4.3 Let k be a convex spherical polygon lying in one open hemisphere of sphere S

and K be the polyhedral angle corresponding to it. At each vertex vi of the spherical polygon,

let the normal plane Vi define a halfspace Vi. Then the polyhedron which is the intersection

of K and halfspaces Vi is bounded.

vj

vi

O

p
p′

l

Vi

Vj

H

Figure 38: An illustration for proof of lemma 4.3. l is a ray, p is a point. By showing that

the hyperplanes tangent to the sphere must have normals in a closed hemisphere opposite to l, the

assumption that the convex polyhedron k lies in an open hemisphere is contradicted.

Proof 4 Suppose not, then there exists a ray l contained within the polyhedron with initial

point at any point inside the polyhedron, [75]. Without loss of generality, let this ray’s initial

point be the origin. Let the hyperplane normal to l be H; let the closed halfspace defined

by this hyperplane and containing only the initial point of the ray be H. In order that this

ray does not intersect any hyperplane Vi, the normals to all Vi must be in H, see Fig. 38.

Recall that the normals to these halfspaces are the vectors of the vertices of the spherical

polygon k, therefore all vertices of k lie in the intersection H ∩ S. Note that this is a closed

hemisphere and therefore also a convex spherical polygon [75], therefore, for any two points

on this hemisphere, e.g. vertices vi and vj , the geodesic between them 〈vi, vj〉 also lies in the

hemisphere. Therefore both vertices and edges of k lie in this hemisphere.

Let the intersection of the ray and S be p. Then because of the convexity of k, for any

point p′ on the boundary of k, the geodesic [p, p′] lies inside k. We have the condition that k

lies in one open hemisphere. However, the entire boundary of H, which is a great circle, lies

in k, and this is a contradiction. Therefore the polyhedron cannot be unbounded.
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Thus a polytope is formed which encloses the endpoints of the link and the origin; line

13 of Alg. 4. Finally, as the link is a cylinder, not a line segment, the radius of the link r is

added to the polytope; see line 14 in Alg. 4. This is done in an over-approximative way by

shifting the half-spaces defining the polyhedral angle outwards by the radius of the link and

enlarging the current radius of the sphere |[l, 0, 0]⊤ + 1p| to
√

|[l, 0, 0]⊤ + 1p|2 + r2. Another

half-space H in Fig. 39 at a distance of r, entirely in the hemisphere not containing gocc, is

intersected with the resulting polytope, as otherwise the intersection point V extends too far

away from the origin.

Figure 39: The general approach shown in 2-D: The halfspaces bounding the occupancy are extended

to account for the radius of the link.

4.6.4 Application to Kinematic Models

3-DOF Model The 3-DOF model requires only one bounding polytope. The length of the

link is taken as the supremum value of the 3rd, prismatic joint. The cylinder radius is taken

to be the maximum radius, as justified in Sec. 4.4.2.

4-DOF Model The algorithm for the 4-DOF model is as follows. We first calculate the

occupancy of the upper arm in Ks and of the forearm in Ke as in the previous section, which

are sH and eF respectively. These are lines 1 and 2 in Alg. 5. We then construct two over-

approximative polytopes sFh,min and sFh,max in which the occupancy of the forearm in Ks

for an arm with minimum length upper arm and an arm with maximum length upper arm

is contained. This is line 7 of Alg. 5. Finally, we take the convex hull of these two polytopes

to obtain the polytope sF which encloses the forearm for any upper arm length, in line 9 of

Alg. 5. Together with sH, this encloses the human arm.

Constructing sFh,min and sFh,max We now present the method for obtaining sFh,min and

sFh,max in lines 4-7 of Alg. 5. Having bounded the forearm movement in its own coordinate

system Ke, we consider the forearm occupancy a static shape and no longer dependent on q3
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Algorithm 5 Finding bounding volumes of a two-link robot

Input: Reachable intervals of each joint: Q1, Q2, Q3, Q4; minimum and maximum segment

lengths: lh,min, lh,max, lf,max; radius of link cylinders: rh, rf .

Output: Two convex polytopes sH, sF

1: sH=enclosingPolytope(Q1, Q2, lh,max,0, rh) {upper arm in Ks}

2: eF=enclosingPolytope(Q3, Q4, lf,max,0, rf ) {Forearm in Ke}

3: for l ∈ {lh,min, lh,max} do

4: for each vertex ev(i) of eV do

5: sF
(i)
h = enclosingPolytope(Q1, Q2, l,

ev(i), 0)\0

6: end for

7: sFh = convexHull(sF
(i)
h )

8: end for

9: sF = convexHull(sFh,min,
sFh,min)

and q4. As the “static shape” is a polytope in Ke, it can be defined by its vertices evi ∈
eV

as in Def. 4.7, which are points in Ke. The occupancy in Ks of a point evi in Ke, we recall,

is {g(θ, φ, l,vi)}, which is over-approximated by following Alg. 4. We prove that the convex

hull of all {g(θ, φ, l, evi)} for
evi ∈

esV over-approximates the forearm occupancy in Ks. Let

eV be the vertices ev(i) of eF and let CH be the convex hull operator. From Def. 4.7, the

convex polytope is the convex hull of its vertices, therefore eCH(V) = eF .

Note that g(θ, φ, l,p) is an affine transformation of p for constant θ, φ and l and therefore

preserves convexity [73, p. 9]. Then:

ef ∈ CH(eV)

=⇒ g(q1, q2, lh,
ef) ∈ CH({g(q1, q2, lh,

ev)|ev ∈ eV}),
(15)

for any q1 and q2. We calculate the set of polyhedra sW:

sW = {sW(evi)|
evi ∈

eV}

sW(ev) ⊇







g(θ, φ, l, ev)

∣

∣

∣

∣

∣

∣

θ ∈ [q1,min, q1,max],

φ ∈ [q2,min, q2,max]







By Lemma 4.2:

∀i ∈ {1, ...n}, {g(q1 , q2, lh,
evi) ∈

sW(evi) =⇒

CH({g(q1, q2, lh,
ev)|ev ∈ eV}) ⊆ CH(sW)

(16)
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From Eq. (15) and 16,



















g(q1, q2, lh,
ef)
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∣

ef ∈ eF ,

θ ∈ [q1,min, q1,max],

φ ∈ [q2,min, q2,max]



















∈ CH(sW)

So, we choose sF = sCH(W). In contrast to the single-link case, because we do not enclose

the origin, we simply exclude the origin from the vertex representation of each sW ∈ sW.

The proof that this polytope still encloses the boundary on the surface of the sphere is trivial

and follows from the fact that the vertices of the spherical polygon k are on the sphere and

that the sphere is a convex object.

Parametric uncertainty in first link In the single-link case, the uncertainty in link

length is accounted for by the fact that the occupancy of smaller forearms is a subset of

that of the maximal-length forearm (Fig. 29). However, the parametric uncertainty of the

upper arm needs to be taken into account in the occupancy of the forearm. This subsection

concerns itself with lines 3 and 9 in Alg. 5, in which the convex hull of the forearm with the

minimum length upper arm sFh,min and the forearm with the maximum length upper arm

sFh,max is taken. We prove that the polytope obtained encloses the forearm occupancy for

all upper arm lengths. We drop the indicator of the coordinate system as we now work only

in Ks.

Lemma 4.4 Let F(lh) be the occupancy of the forearm in the base coordinate system with a

upper arm length lh. Then the occupancy of the forearm for any lh,min ≤ lh ≤ lh,max lies in

F = CH(F(lh,min),F(lh,max)).

Proof 5 See Fig. 40. let a(lh,max) and a(lh,min) be the vectors from the shoulder to the

elbow for given q1 and q2 and the minimum lh,min and maximum lh,max upper arm lengths

respectively and let b be the vector from the elbow to an arbitrary point p(lh) on the forearm,

for given q1, q2, q3 and q4, such that p(lh) = b+a(lh). We observe that a(lh,max) and a(lh,min)

are collinear, so a(lh,min) = λmina(lh,max), λmin =
lh,min

lh,max
. Thus, the position of the elbow for

upper arm length lh,min ≤ lh ≤ lh,max lies on the line segment λa(lh,max), λmin ≤ λ ≤ 1.

As the orientation of the forearm with respect to the shoulder (origin) is independent of

upper arm length, b is independent of upper arm length and p(lh) therefore lies on the line

segment 〈p(lh,max),p(lh,min)〉 = {b+ λa(lh,max)|λmin ≤ λ ≤ 1}. Then, as the convex hull of

two points is the line segment between them, by Lemma 4.2, p(lh,max) ∈ F(lh,min),p(lh,min) ∈

F(lh,max) =⇒ 〈p(lh,max),p(lh,min)〉 ∈ CH(F(lh,min),F(lh,max)).
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Therefore any arbitrary point on the forearm p(lh) where lh,min ≤ lh ≤ lh,max, p ∈

CH(F(lh,min),F(lh,max))

lh,min

lh,max

a(lh,min)

a(lh,max)

b

p(lh,min)

p(lh,max)

Figure 40: Diagram for proof of Lemma 4.4. Since a(lh,min) is a scalar multiple of a(lh,max), and p

= a plus a fixed vector b, enclosing p(lh,min) and p(lh,max) encloses all values of p in between.

We next present two existing methods from the literature for enclosing links of a kinematic

chain, for comparison to the method described above.

4.6.5 Sampling Approach

The idea of Reachable Volumes for enclosing the occupancy of kinematic chains is presented

in [78]; the computation of these volumes uses a sampling-based approach, but does not

formally guarantee that all reachable joint positions lie within the reachable volume. Such

sampling-based methods are computationally expensive, especially if the sample density is

high, and therefore best suited for offline applications.

In our implementation, each link is represented by a collection of occupancy samples in

its own coordinate system. In the 4-DOF model, the upper arm is represented by the set

of occupancy samples VH = {h1, ..., hp} and the forearm by the set VF = {f1, ...fq}, where

hi, fi ∈ R
3. We sample the reachable set in the joint space, and find the sets of forward

kinematics transformation matrices TH = {eT1
s, ...,

eTr
s} and TF = {wT1

s, ...,
wTs

s}, where

eTj
s,wT

j
s ∈ R

4×4 are the transformation matrices from the base coordinate system Ks to

the elbow coordinate system Ke and the end-effector coordinate system Kw respectively, for

each joint space sample j ∈ Rq. We apply these transformation matrices to the occupancy

samples, obtaining:

H ={2Tj
0hi|hi ∈ H,

eTj
s ∈ Th}

F =

8
⋃

i=1

p
⋃

j=1

wTj
sfi

Finally, for the 4-DOF model, we find the two convex hulls of F and H, producing
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approximative polyhedra representing upper arm and forearm respectively. For the 3-DOF

model, the same technique is used but only for one link.

4.6.6 Interval Transformation Matrices

This method is presented by the authors in [79] for use in predicting the occupancy of serial-

link robots. Let Rq be the projection of the state space reachable set onto the joint space.

We over-approximate the occupancy from Rq.

The entire set of possible transformation matrices of the coordinate system of the ith

joint {F (q)(i)|q ∈ Rq} is enclosed in an interval matrix, which is then applied to the ith limb

segments, i.e. we find the matrix of intervalsM(i), where:

M(i) ⊇ {F (q)(i) ∈ R
4×4|q ∈ Rq}

The occupancies of each link in their own coordinate spaces are calculated offline, and enclosed

in zonotopes Zlink,i, where i refers to the ith link.

We then transform each link Zlink,i by M(i) to obtain an over-approximation of the

occupancy of the link, see Fig. 41. This method is used for serial link robots where the shape

of the links is well known and the reachable sets are small.

The multiplication of a matrix of intervals with a zonotope is described in [68] and results

in an over-approximative zonotope. This method therefore represents each link as an over-

approximative zonotope enclosing its occupancy:

Γ(t) =

4
⋃

i=1

M(i)Zlink,i

In the next section we compare the novel representation method presented in Sec. 4.6 with

the methods above, for both 3-DOF and 4-DOF models, on real data, in order to validate

the models and to justify simplifications made.

4.7 Validation

We test our approach on two persons from our trials, one male and one female, executing

movements other than those used to determine the parameters of the model. The movements

executed were catching a football and catching a tennis ball, and are chosen because the

subject could not “overplan” the movement before execution, i.e. the movements were close

to involuntary. This is expected to be similar to human behaviour in an environment where

humans are comfortable working alongside robots. The proposed approach is compared with
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base coordinate system

joint

uncertainties

link zonotope Zlink

enclosing exact occupancy

exact occupancy

Γ(t)

link of chain

Figure 41: Uncertainties in joint positions lead to uncertainty in the occupancy of the link, which

can be over-approximated by a zonotope

the approaches presented in Sec. 4.6.6 and 4.6.5. The movements are sampled at intervals of

tfinal and it is checked whether Γ(tfinal) encloses the marker positions in interval k+1 given

the marker positions from the interval k. The qualities compared are:

1. volume as fraction of “exact” volume,

2. computation time as fraction of prediction time tfinal,

3. percentage of time steps for which all markers at tfinal were included in the reachable

occupancy Γ(tfinal)

For the over-approximative methods, the minimum and maximum length of the upper

arm cylinder were taken to be 0.3m and 0.4m respectively, and its radius was 0.075m. The

maximum length of the forearm was 0.5m and its radius was 0.1m. Following from Eq. (8),

in the 3-DOF model, the radius of the cylinder was set at 0.25m, half the forearm length. As

the third criterion checks containment of the marker positions, in the sampling approach in

4-DOF, the occupancy samples of the links are set as the marker positions as illustrated in

Fig. 19: on the upper arm, RSHO, RUPA and RELB; on the forearm, RELB, RFRM, RWRA,

RWRB and RFIN (and the respective markers on the left arm). In the sampling approach in

3-DOF, 12 samples were taken from the edge of the cylindrical link, constituting a hexagonal

prism. The “exact” volume was taken to be the volume using the sampling method with

256 samples in the reachable set for the 4-DOF model and 64 samples for the 3-DOF model.

In contrast, the sampling method, was implemented with samples only at the corners of the

zonotope, i.e. two samples per generator. The sensor error was set at ±0.05rad for the first
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two joints, ±0.1rad for the 3rd and 4th rotational joints and ±20mm for the prismatic joint.

For each subject and each movement, the left and right arm occupancies were tested and

averaged, for values of tfinal of 12.5ms and 20.8ms. For tfinal > 20.8, Γ(tfinal) becomes very

large, although this increase is less severe in the 3DOF model. This is illustrated in Fig. 42.

Figure 42: Left to right: reachable occupancies at 12.5ms, 20.8ms and 37.5ms respectively, for

4-DOF (top) and 3-DOF (bottom) models. Scale in meters; origin at shoulder.

Computations were performed on MATLAB R2014b running on a Macbook Pro with OSX

10.9.5. For the reachability analysis, the toolbox CORA developed in UnCoVerCPS was used,

which uses INTLAB [80] for interval computations. To generate the robot kinematics and

dynamics, the Robotic Toolbox [81] was used. For the representation as polytopes, the MPT

toolbox [82] was used, which uses YALMIP [83] for linear matrix inequality computations.

Table 6: 4-DOF Model, 12.5ms

Approach: Sampling Interval Matrices Polytopes

Volume ratio 0.75 5,116 3.92

Computation

time

5.73 0.40 81.25

Entire arm

contained

33.4% 100% 100%
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Table 7: 3-DOF Model, 12.5ms

Approach: Sampling Interval Matrices Polytopes

Volume ratio 0.99 5.44 1.51

Computation

time

4.13 0.25 0.79

Entire arm

contained

99.8% 100% 100%

Table 8: 4-DOF Model, 20.8ms

Approach: Sampling Interval Matrices Polytopes

Volume ratio 0.54 1.05 ×105 3.58

Computation

time

3.22 0.31 82.21

Entire arm

contained

36.5% 100% 100%

Table 9: 3-DOF Model, 20.8ms

Approach: Sampling Interval Matrices Polytopes

Volume ratio 0.99 12.06 1.34

Computation

time

2.43 0.19 0.52

Entire arm

contained

100% 100% 100%

In both the 3-DOF and 4-DOF model, the clear advantage of the interval matrix method

in terms of computation time is offset by the fact that the reachable set quickly grows to fill

the entire arm workspace and beyond. On the other hand, the sampling method in 4-DOF

has the lowest volume but does not enclose all the points in the arm; its computation time,

furthermore, is unsatisfactory in both models. In contrast, our method encloses the entire

arm and the size of the over-approximation is less than the volume of the reachable occupancy.
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However, the computation time of the 3-DOF model is clearly superior to that of the 4-DOF

model. The polytope resulting from the 3-DOF model is defined by fewer halfspaces, so it

will also be faster in collision-checking algorithms.

Volume ratio is also not a perfect measure of the quality of enclosure: a long, thin, or

spiky over-approximation is likely to give more false positives in collision-checking algorithms

than a sphere-like occupancy. Offline computation could also contribute to a tighter-bounded

reachable occupancy.

The fact that the reachable set of the 4-DOF model grows so fast can be explained by the

large accelerations possible in joints 3 and 4: |q̈3|max = 7900rad/s2 and |q̈4|max = 1800rad/s2.

The 3-DOF model, in incorporating movements of the forearm into a prismatic joint, avoids

such problems.

4.8 Conclusion on Human Arm Prediction

We address the problem of tightly bounding reachable occupancies of the human arm for a

range of parameters and all possible movements. We present a novel method for bounding the

occupancy of the human arm online from sensor data. Our approach fits motion capture data

to a kinematic model to generate the uncertain system dynamics. In real time, it fits sensor

data to the kinematic model, uses the dynamics generated offline to generate reachable sets

of kinematic model and then converts this to a reachable occupancy of the arm in Cartesian

space. The model is validated by checking against movements not used in the generation of

the dynamic model. The reachable occupancy is represented by convex polyhedra for ease

of interface with a collision checker, and can be used in path planning algorithms to verify

collision free robot trajectories where humans and robots share a collaborative workspace.

Future work should focus on reliable state estimation techniques from sensors that can be

employed in HRI scenarios and implementing a safe path planning algorithm to ensure the

entire algorithm stays within real-time.

5 Conclusion

We present techniques for predicting the behavior of surrounding entities. In the automated

driving setting, those entities are surrounding traffic participants, while in the human-robot

collaboration setting, surrounding entities are humans surrounding the robot. Since the

exact behavior of traffic participants or humans is not exactly known, we add set-based

uncertainty. Due to set-based uncertainties, we use reachability analysis to predict the set

of all possible behaviors in an over-approximative way. The proposed abstraction of system
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dynamics significantly reduces computation time and allows us to use the presented techniques

online during the operation of the ego system, i.e., the system to be verified.

Based on alternating measurements and reachability analysis, the set of solutions is propa-

gated forward in time until new measurements are available for the next iteration. After each

measurement, the measured states are enlarged by the set of possible measurement errors.

The predicted occupancies over time are used as a forbidden region for the control design,

providing the constraints of the controller.

Although the approaches for predicting traffic participants and humans differ in details,

the main ideas are similar and are implemented with the support of new reachability analysis

techniques developed in this work. The prediction of surrounding entities will be integrated

into the automated vehicles use case and the robotic use case.
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