
UnCoVer

Unifying Control and Verification

of Cyber-Physical Systems

(UnCoVerCPS)

WP4 Tool Support (Task 4.1)

D4.1 – Theoretical Foundations for Combining Zonotopes and Support Functions

Ref. Ares(2015)6002490 - 22/12/2015



WP4 D4.1 – Theoretical Foundations for Combining Zono-

topes and Support Functions

Authors Goran Frehse - Univ. Grenoble Alpes, Verimag

Matthias Althoff - Technische Universität München

Short Description We present a detailed assessment of the computational effi-

ciency of set representations for reachability, namely zonotopes

and support functions. As a result, we propose representing

reachable sets as a combination between support functions and

zonotopes. This representation can be converted to constraint

polyhedra of desired (directional) precision, at a higher preci-

sion compared to using only support functions and with more

accuracy than only using zonotopes.

Keywords Reachability analysis, support functions, zonotopes, polyhedra,

linear continuous systems.

Deliverable Type Report

Dissemination level Public

Delivery Date 31 Dec 2015

Contributions by —

Internal review by Simone Schuler, Bastian Schürmann
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1 INTRODUCTION

1 Introduction

Dynamical systems are known for producing complex behaviors, e.g., trajectories of continuous

variables, that can be difficult to analyze and verify. In this paper, we consider continuous

systems defined by a set ordinary differential equations (ODE) with initial and boundary

conditions, and address the problem of computing a cover of all the states that are reachable

in the system. This is referred to as set-based reachability analysis and can be used, e.g., to

show that the system does not reach any states that are considered unsafe. It can also provide

quantitative information, e.g., for measuring the jitter in an oscillator circuit.

Reachability computation can be seen as a generalization of numerical simulation. Just like

numerical simulation, reachability computation has to use approximations if the dynamics of

the system are complex. Working with sets instead of points, approximate reachability can be

conservative in the sense that the computed sets are sure to cover all solutions. Computation

costs generally increase sharply in terms of the number of continuous variables. Scalable

approximations are available for certain types of dynamics, as discussed later in this section,

but this performance comes at a price in accuracy. The trade-off between runtime and

accuracy remains a central problem in reachability analysis. The approximation error requires

particular attention since it can accumulate rapidly, leading to a coarse cover, prohibitive

state explosion, or preventing termination. In this paper, we propose an approach with precise

control over the balance between approximation error and scalability, particularly tailored to

changing dynamics.

Contributions The main contribution of this paper is the concept of representing the

reachable sets themselves as a combination between support functions and zonotopes. This

representation can be converted to constraint polyhedra of desired (directional) precision.

This work provides the basis for scalable use of support function algorithms on systems with

nonlinear dynamics. Existing algorithms for support functions are tailored specifically to

affine dynamics (linear dynamics with nondeterministic offsets). Nonlinear dynamics can be

approximated with piecewise affine dynamics, but this requires switching the dynamics during

the analysis run. Existing support function algorithms are not scalable when the dynamics

change, as will be examined in detail in this paper.

In the context of the EU project UnCoVerCPS, this work contributes know-how to

Task 3.1 (Faster methods for reachability analysis of nonlinear systems), since it makes

fast support function algorithms applicable to nonlinear systems. It is also related to Task
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2 EFFICIENT SET REPRESENTATIONS FOR REACHABILITY

4.3 (Integration of SpaceEx and CORA), since SpaceEx so far is using support function

algorithms, and Cora is using zonotopes. Since Task 4.3 will provide both technologies on

the same software platform, the algorithms proposed in this report can be implemented

and assessed experimentally.

Related Work The content of this paper builds on research going back more than 20 years.

Notable break-throughs were the recurrence equations for piecewise affine dynamics in [4],

the use of zonotopes for scalability in [14], and the use of support functions for scalability in

[19]. To the best of our knowledge, this is the first work on combining zonotopes and support

functions. In this paper, we limit the discussion to switched dynamics, which change only at

isolated points in time. A more general case of time-varying dynamics was considered in [?],

where the dynamics are allowed to vary continuously over time. Other related work is cited

throughout the paper. For introductory texts on reachability analysis see, e.g., in [22, 24, 7].

Surveys can be found in [3, 21, 6].

The remainder of the paper is structured as follows. In Sect. 2, we briefly present zonotopes

and support functions, as well as the main geometric operations on them. In Sect. 3, we

present the problem of approximating the flowpipes of systems with affine dynamics, extending

known algorithms to variable time steps and switched dynamics. The presentation is largely

independent of the set representation used to implement the algorithm. In Sect. 4, we

analyze and compare the complexity of implementing the algorithm from Sect. 3 for zonotopes,

polyhedra, and support functions. Our observations are then used to devise a combination of

support functions and zonotopes, which we present in Sect. 5. We conclude with a summary

of our findings and an outlook on future work in Sect. 6.

2 Efficient Set Representations for Reachability

In this section, we briefly introduce two set representations that are known to lead to highly

scalable reachability computations. The first one, zonotopes, is a particular type of centrally

symmetric polytope. The downside of zonotopes is that they are not closed under certain

set operations used in reachability. The second set representation is support functions. Any

convex set can be represented by its support function, and all geometric operations have its

corresponding operation on the support function. However, the number of evaluations may

increase prohibitively if geometric operations are chained. The goal of the report is to isolate

the advantages and disadvantages of both in the context of reachability, and to examine how
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2 EFFICIENT SET REPRESENTATIONS FOR REACHABILITY

Figure 1: A zonotope is a special form

of centrally symmetric polytope, as illus-

trated here with generators v1, v2, v3, v4,

and center c

v1
v2

v3

v4

c

both can be combined beneficially.

2.1 Zonotopes

Zonotopes are a compact representation for a special form of polytopes that have been

used successfully for reachability analysis due to their computationally attractive features

[14, 2]. A zonotope P ⊆ Rn is defined by a center c ∈ Qn and a finite number of generators

v1, . . . , vk ∈ Qn that span the polytope as bounded linear combinations from the center:

P =
{
c+

k∑
i=1

αivi

∣∣∣ αi ∈ [−1, 1]
}
.

A common denotation for this zonotope is P = (c, 〈v1, . . . , vk〉). Zonotopes are central-

symmetric convex polytopes, see Fig. 1 for an illustration. An alternative representation of P

uses the generators in a matrix. For any p-norm

‖x‖p =
(∑n

i=1
|xi|p

)1/p
,

the k-dim. ball is

Bkp =
{
x ∈ Rk

∣∣∣ ‖x‖ ≤ 1
}
.

A zonotope with k generators is an affine transformation of the ball of the infinity-norm (a

k-dimensional unit hypercube). Let the generator matrix be M = [v1 . . . vk], then

P = c⊕MBk∞.

.

2.1.1 Geometric Operations

We present how the geometric operations required for reachability are implemented for

zonotopes, with particular attention to the computational cost, measured in the number of

(binary) arithmetic operations.

Linear and affine transformations can be computed efficiently for zonotopes. For a matrix

A ∈ Qm×n, the image of the linear transformation can simply be computed component-wise:

AP = (Ac, 〈Av1, . . . , Avk〉)
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2 EFFICIENT SET REPRESENTATIONS FOR REACHABILITY

The number of numeric operations involves is O
(
n2(k + 1)

)
.

The Minkowski sum can be computed efficiently for zonotopes P = (c, 〈v1, . . . , vk〉) and

Q = (d, 〈w1, . . . , wm〉) by a single vector addition and a single list concatenation:

P ⊕Q = (c+ d, 〈v1, . . . , vk, w1, . . . , wm〉).

Only the centers of the zonotopes need to be manipulated, for the generators it suffices to

join the two lists. The operation therefore involves only O (n) numeric operations.

Zonotopes are not closed under convex hull, i.e., the convex hull of two zonotopes is not

necessarily a zonotope. Zonotopes are not closed under intersection. The lack of accuracy in

intersections can make the computation of successors in hybrid automata problematic, since

the image computation of discrete transitions requires intersection with the guard set of the

transition. In special cases it can be advantageous to use an approach called continuization

to avoid the intersection operation, see [1]. Instead of intersecting a set of states with the

guard set and then applying the dynamics of the successor location to the result, the states

suspected to intersect with the guard set (by some approximative measure) are subjected

to nondeterministic dynamics that overapproximate the dynamics both before and after the

jump. The dynamics of the successor location are used once enough time steps have been

carried out to be sure the set no longer intersects with the guard set.

The bounding box and bounding sphere of a zonotope can be constructed efficiently as

follows [16]. The absolute row sums of a zonotope with generators vi are

rP =

k∑
i=1

|vi| .

The bounding box (interval hall) of P is

c⊕ diag(rP )B∞,

where B∞ is the unit hypercube. The Euclidian radius of P is

rad(P ) = ‖rP ‖2.

The bounding sphere of P is

c⊕ rad(P )B2,

where B2 is the unit sphere. Both can be computed with at most n(k+1) numerical operations.

For any matrix A with column vectors aj and zonotope P , let rP be the vector of absolute

row sums of P . The absolute row sums of AP are bounded by

rAP =
∑k

i=1
|Avi| ≤

∑k

i=1
|A| |vi| = |A|

∑k

i=1
|vi| = |A| rP . (1)
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2 EFFICIENT SET REPRESENTATIONS FOR REACHABILITY

and the radius is bounded by

rad(AP ) ≤ ‖|A| rP ‖2 (2)

2.1.2 Simplification

Since the number of generators of a zonotope increases with the Minkowski sum and convex

hull operations, it can be necessary to overapproximate a zonotope with another one that

has fewer generators. The following approach from [14] reduces the number of generators

by n. Let v1, . . . , v2n be the generators with the lowest values of ‖vi‖1 − ‖vi‖∞ (pointing in

one of the axis directions). The reduced zonotope is obtained by replacing v1, . . . , v2n with

v′1, . . . , v
′
n, where the j-th element of vi is defined by v′i[j] = 0 if i 6= j and

v′i[j] =
2n∑
j=1

∣∣vi[j]∣∣.
Note that this approximation is tight in the positive and negative axis directions. The

computational cost for k generators is O (nk log k). A big advantage of this simplification is

that simplification and Minkowski sum commute. Adding simplified zonotopes gives the same

result as simplifying the sum of the original zonotopes. This means that simplification does

not lead to an explosion of the approximation error, when applied in an iterative algorithm

that involves only Minkowski sum.

2.2 Support Functions

We now introduce our notation, give definitions for polyhedra and support functions, and

recall some fundamental properties. A halfspace H ⊆ Rn is the set of points satisfying a

linear constraint, H =
{
x | aTx ≤ b

}
, with normal vector a = (a1 · · · an) ∈ Rn and b ∈ R. A

polyhedron P ⊆ Rn is the intersection of a finite number of halfspaces, written as

P =
{∧m

i=1
aTix ≤ bi

}
,

where ai ∈ Rn and bi ∈ R. A polytope is a bounded polyhedron. Any convex set can be

represented by its support function. The support function of a compact set X attributes to a

direction ` ∈ Rn the scalar value

ρX (`) = max
{
`Tx

∣∣ x ∈ X}.
For a given direction `, it defines the position of a halfspace

H` =
{
`Tx ≤ ρX (`)

}
,
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2 EFFICIENT SET REPRESENTATIONS FOR REACHABILITY

`
ρX (`)

X

0

(a) support function

`3

`4

`1

`2

dXeL

X

(b) outer approximation

Figure 2: Evaluating the support function in a set of directions gives a polyhedral outer approximation

which touches and contains X . If ` is of unit length, then ρX (`) is the signed distance of H`
to the origin, see Fig. 2(a) for an illustration. Evaluating the support function for a set of

directions L ⊆ Rn gives an outer approximation

dXeL =
⋂
`∈L

{
`Tx ≤ ρX (`)

}
, (3)

i.e., X ⊆ dXeL. If L = Rn, then X = dXeL, so the support function represents X exactly. If L

is a finite set of directions L = {`1, . . . , `m}, then dXeL is a polyhedron, as shown in Fig. 2(b).

This is also referred to as a template polyhedron with L being the template directions. The

difference between using support functions and traditional methods for template polyhedra,

e.g., [23], lies in the fact that the outer approximation dXeL can be refined at any time, and

incrementally, by adding more directions to L. One can interpret evaluating support functions

as the lazy, on-demand, construction of a template polyhedron.

2.2.1 Geometric Operations

The following set operations are required by our reachability algorithm, and are extremely

efficient on support functions. We measure the number of operations per template direction.

The final cost will depend on how many directions are evaluated; more on this below.

Consider non-empty compact convex sets X ,Y ⊆ Rn. The linear map with a matrix

M ∈ Rm×n is MX = {Mx | x ∈ X}. Using support functions, the linear map simplifies to

ρMX (`) = ρX (MT`), (4)

which is O (mn). The convex hull of a set Z ⊆ Rn is

CH(Z) =

{
m∑
i=1

λivi

∣∣∣∣∣ vi ∈ Z, λi ∈ R≥0,

m∑
i=1

λi = 1

}
.

Using support functions, the convex hull of X and Y is

ρCH(X∪Y)(`) = max{ρX (`), ρY(`)},
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2 EFFICIENT SET REPRESENTATIONS FOR REACHABILITY

which is O (1). The Minkowski sum is X ⊕ Y = {x+ y | x ∈ X , y ∈ Y}, which translates to

the O (1) operation

ρX⊕Y(`) = ρX (`) + ρY(`).

In the following example, a sequence of linear mapping and Minkowski sums leads to a convex

set that is prohibitively complex for polyhedral operations, but that is easy to approximate

with support functions. Evidently, support functions do not enable us to avoid the curse of

dimensionality in general: An n-dimensional approximation with a distance of ε to the real

set requires O
(
1/εn−1

)
evaluations of the support function [20]. But many problems do not

require precise knowledge of the whole set; with the support function the approximation can

be targeted to where it matters. A simple example shall illustrate this point.

Example 2.1 Consider the halfspace H = {aTx ≥ b}. Then X ∩ H 6= ∅ if and only if

ρX (a) ≥ b. Furthermore, X ⊆ H if and only if −ρX (−a) ≥ b. Each problem can be decided

with a single evaluation of the support function.

The problem of whether two convex sets intersect is known as the separation problem, and it

can be addressed by computing the support function in a sequence of directions. Let

h(`) = ρX⊕(−Y)(`) = ρX (`) + ρY(−`),

which is a convex function. Then X ∩H = ∅ if and only if min`∈Rn h(`) < 0. Any converging

convex minimization algorithm applied to h(·) will produce a sequence of directions that

converges to a separating direction if it exists. Separation algorithms adapted to the context

of approximate reachability have been proposed in [8].

Two more operations of our reachability algorithm, intersection and containment, turn

out to be difficult for support functions. The intersection X ∩ Y requires solving a convex

optimization problem:

ρX∩Y(`) = inf
ν∈Rn

ρX (`− ν) + ρY(ν).

Containment checking with support functions generally involves an uncountable number

of directions: X ⊆ Y if and only if ρX (`) ≤ ρY(`) for all ` ∈ Rn. We circumvent these

problems by switching to polyhedra as set representation at corresponding points in the

algorithm. Intersection of polyhedra is cheap since it amounts to taking the union of their

constraints. Containment checking is simple if the right hand side is a polyhedron: Let

P =
{∧m

i=1a
T
ix ≤ bi

}
, then X ⊆ P if and only if ρX (ai) ≤ bi for i = 1, . . . ,m.
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3 FLOWPIPE APPROXIMATION

2.2.2 The Support Function of Zonotopes

The support function of a zonotope is easily derived from its ball representation. The support

function of the k-dimensional unit ball of the p-norm is [17]

ρBkp (d) = ‖d‖ p
p−1

,

and for d 6= 0 it has the set of maximizers

σBkp (d) =
{
y ∈ Bkp

∣∣∣ dTy = ‖d‖ p
p−1

}
.

To quickly compute one of the maximizers, say y∗, let y be defined element-wise from

yidi = |di|
p
p−1

and then norming to y∗ = y/‖y‖p. Recall that ρMX (d) = ρX (MTd) and σMX (d) = MσX (MTd).

A zonotope with k generators can be written as P = MBk∞ ⊕ c, with generator matrix

M = [v1 . . . vk]. The support function of P is

ρP (d) = ‖MTd‖1 + dTc,

which involves 2n(k + 1) numeric operations. The (not necessarily unique) maximizers are

σP (d) = {c+ y | dTy = ‖MTd‖1}.

A maximizer y∗ can be computed as y∗ = c+My, where y is defined element-wise as

yi = sign(MTd)i.

3 Flowpipe Approximation

Our goal is to solve the following problem: given an initial set of states X0 and dynamics in

the form of an ODE, compute a finite cover of all possible trajectories starting in X0. More

precisely, let the affine dynamics be of the form

ẋ = Ax+ u, u ∈ U , (5)

where A is an n× n matrix and the input set U is compact and convex. To simplify notation,

we assume that constants and input mappings are modeled within U , e.g., dynamics of the

form ẋ = Ax+ b+Bv, v ∈ V are modeled with (5) by setting U = {b} ⊕BV.

The evolution of the nondeterministic input u is described by an input signal ζ : R≥0 → U

that attributes to each point in time a value of u. The input signal does not need to be
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3 FLOWPIPE APPROXIMATION

continuous. A trajectory ξ(t) from a state x0 is the solution of the differential equation (5)

for a given initial condition ξ(0) = x0 and a given input signal ζ. It has the form

ξx0,ζ(t) = eAtx0 +

∫ t

0
eA(t−s)ζ(s)ds. (6)

It consists of the superposition of the solution of the autonomous system, obtained for ζ(t) = 0,

and the input convolution, which is the solution obtained for x0 = 0. Given an initial set X0,

the reachable states at time t is the set of values of the solutions of (5) with initial condition

x(0) ∈ X0. We denote this set with

Xt = eAtX0 ⊕
∫ t

0
eA(t−s)Uds = eAtX0 ⊕

∫ t

0
eAsUds. (7)

Let Yt be the input convolution at time t, i.e., the states reachable from X0 = {0}, then (7)

can be written as

Xt = eAtX0 ⊕ Yt. (8)

The flowpipe segment over the time interval [tb, te] is the set

Xtb,te =
⋃

tb≤t≤te

Xt.

The goal of our flowpipe approximation is to compute a finite sequence of sets Ω0,Ω1, . . . such

that ⋃
0≤t≤T

Xt ⊆ Ω0 ∪ Ω1 ∪ . . . . (9)

The goal of this paper is to investigate how the flowpipe approximation can be carried out

efficiently when the dynamics and input set change over time. In particular, we will consider

piecewise constant A, e.g., A = A1 for 0 ≤ t < t1 and A = A2 for t ≥ t2. The above principles

are formalized in the next section, which prepares our investigation into handling variable

dynamics.

3.1 Fundamental Properties of the Reachable Set

We recall some fundamental properties of the reachable set and examine how these properties

hold up when the dynamics change with time. In the following, we consider time-dependent

dynamics

ξ̇(t) = Atx(t) + ζ(t), ζ(t) ∈ Ut, (10)

where ξ(t) ∈ Rn is an n-dimensional vector, At : R≥0 → Rn × Rn attributes to every time

point t a real matrix, and Ut : R≥0 → 2R
n

attributes to every time point t a convex set. Let
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3 FLOWPIPE APPROXIMATION

Reach[t1,t2](At, Ut, X) denote the reachable states starting from the set X with input set Ut

in the time interval [t1, t2],

Reacht1,t2(At, Ut, X) = {ξ(τ) | t1 ≤ τ ≤ t2, ξ(0) ∈ X, ξ̇(t) = Atx(t) + ζ(t), ζ(t) ∈ Ut)}. (11)

Our goal is to compute a sequence of continuous sets Ω0, . . . ,ΩN−1 that covers the reachable

states up to time T (N depends on the chosen time steps):

Reach0,T (At, Ut,X0) ⊆
N−1⋃
k=0

Ωk. (12)

Recall that for constant A and given ξ(t0) = x0 and ζ(t), the solution of (10) is given by

ξ(t) = eA(t−t0)ξ(t0) +

∫ t

t0

eA(t−τ)ζ(τ)dτ. (13)

The reachable set can therefore be expressed as

Reacht1,t2(A,Ut, X) =

{
eA(t−t0)x0 +

∫ t

t0

eA(t−τ)ζ(τ)dτ

∣∣∣∣ t1 ≤ t ≤ t2, x0 ∈ X, ζ(t) ∈ Ut
}
.

(14)

In the following, we will frequently use the superposition principle to separate the autonomous

evolution of the system (i.e., without inputs) from the influence of the inputs. To simplify

notation, we denote with 0 the number zero, a vector with all elements zero, and the set {0}.

Lemma 3.1 (superposition)

Reacht1,t1(At, Ut, X) = Reacht1,t1(At, 0, X)⊕ Reacht1,t1(At, Ut, 0).

Let the input convolution be defined as

Yt1,t2(At, Ut) = {ξ(t2) | ξ(t1) = 0, ξ̇(t) = Atx(t) + ζ(t), ζ(t) ∈ Ut}. (15)

Lemma 3.2

Reacht1,t1(At, Ut, 0) = Y0,t1(At, Ut).

The input convolution for constant At = A simplifies with (13) to

Lemma 3.3 If At = A = const,

Yt1,t2(A,Ut) =

{∫ t2

t1

eA(t2−τ)ζ(τ)dτ

∣∣∣∣ ∀t1 ≤ t ≤ t2 : ζ(t) ∈ Ut
}
. (16)

Proof 1 The result is obtained by applying (13) to (15).

The following lemma relates the input convolution to the reachable states.
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3 FLOWPIPE APPROXIMATION

Lemma 3.4 If At = A = const and Ut = U = const,

Reacht1,t2(A,U,X) =

{
eAtX ⊕ Y0,t(A,U)

∣∣∣∣ t1 ≤ t ≤ t2}.
We now derive some useful properties of the input convolution. The input convolution

can be shifted in time if the dynamic matrix A is constant and Ut repeats after the shift.

Lemma 3.5 (input convolution shift) If At = A = const and Ut = Ut+∆ for all t1 ≤ t ≤

t2, then Yt1,t2 = Yt1+∆,t2+∆.

Proof 2 Consider (16) for Yt1+∆,t2+∆. Applying the substitution z = τ − ∆ immediately

leads to the conclusion.

The input convolution can be split if the dynamic matrix A is constant over some time interval.

Note that Ut can be time-varying.

Lemma 3.6 (input convolution split) If At = A for t1 ≤ t < t1+t2, then Y0,t1+t2(At, Ut) =

eAt2Y0,t1(At, Ut)⊕ Yt1,t1+t2(A,Ut).

Proof 3 Consider Def. 15. The trajectories ξ(t) that define Y0,t1+t2(At, Ut) must satisfy

ξ(0) = 0, (10) and At = A for t1 ≤ t < t2. We can separate the part of ξ(t) before and after

t1, and apply (13) to the part after t1. Then the trajectories ξ(t) are characterized by

∀0 ≤ τ ≤ t1 : ξ̇(τ) = Aτξ(τ) + ζ(τ),

∀t1 ≤ τ ≤ t1 + t2 : ξ(τ) = eA(τ−t1)ξ(t1) +

∫ τ

t1

eA(τ−ν)ζ(ν)dν.

For Y0,t1+t2(At, Ut), we only need the value ξ(t1 + t2), defined in the second line. The value

depends on ξ(t1), whose characterization is given by the first line and exactly corresponds to

the definition of Y0,t1(At, Ut). We obtain

Y0,t1+t2(At, Ut) =

{
ξ(t1 + t2)

∣∣∣∣ ξ(t1) ∈ Y0,t1 ,

ξ(t1 + t2) = eA(t2+t1−t1)ξ(t1) +

∫ t1+t2

t1

eA(t1+t2−ν)ζ(ν)dν

}
.

The first summand of ξ(t1 + t2) can be factored out to yield eAt2Y0,t1(At, Ut). The remaining

integral term corresponds to the definition of Yt1,t1+t2(A,Ut). This leaves

Y0,t1+t2(At, Ut) = eAt2Y0,t1(At, Ut)⊕ Yt1,t1+t2(A,Ut).

Note that the Minkowski sum is not an overapproximation, since the choice of ζ(τ) for τ ≤ t1

is independent of the choice for τ ≥ t1 (a zero measure difference at τ = t1 does not change

the value of the integral).
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3 FLOWPIPE APPROXIMATION

With the above results, the input convolution allows us to succinctly express a time shift of

the reachable states if the dynamics are time-invariant.

Lemma 3.7 (time-invariant shift) If At = A = const and Ut = U = const,

Reacht1+∆,t2+∆(A,U,X) = eA∆Reacht1,t2(A,U,X)⊕ Y0,∆.

Proof 4 With Lemmas 3.4 and 3.5,

Reacht1+∆,t2+∆(A,U,X) = {eA∆eA(t−∆)X ⊕ Y−∆,t−∆ | t1 ≤ t−∆ ≤ t2}

= {eA∆eAzX ⊕ Y−∆,z | t1 ≤ z ≤ t2}.

Using Lemma 3.6 and Lemma 3.5 we obtain

Y−∆,z = Y−∆,0 ⊕ eA∆Y0,z = Y0,∆ ⊕ eA∆Y0,z,

Reacht1+∆,t2+∆(A,U,X) = {eA∆eAzX ⊕ Y0,∆ ⊕ eA∆Y0,z | t1 ≤ z ≤ t2}.

We obtain the conclusion by factoring out the term of the Minkowski sum that is independent

of z, and then applying Lemma 3.4.

Finally, we recall a classic property of the reachable set, which can be found, e.g., in [25]:

Lemma 3.8 (time-variant union)

Reach0,t1+t2(At, Ut, X) = Reach0,t1(At, Ut, X) ∪ Reacht1,t1+t2(At, Ut, X).

3.2 A Variable Time Step Algorithm

We now present the construction of a flowpipe approximation in the form of a sequence

Ωk := Ωtk,tk+1
, where tk =

∑k−1
i=0 δi for arbitrary time steps δ0, δ1, . . .. As we will show, each

set Ωtk,tk+1
covers the reachable states in the time interval [tk, tk+1]. We consider only constant

dynamics At = A and inputs Ut = U .

Recall that Reach0,δ denotes the states reachable in the time interval [0, δ], and Reachδ,δ

the states at exactly the time point δ. Let Ω0,δ(X0, U) and V0,δ(U) be defined as a function

of δ such that they satisfy

Reach0,δ(A,U,X0) ⊆ Ω0,δ(X0, U), Reachδ,δ(A,U, 0) ⊆ V0,δ(U). (17)

Several ways to compute Ω0,δ and V0,δ have been proposed in [17] (other authors have proposed

different but related solutions). They are first-order approximations of the form

Ω0,δ(X0, U) = CH (X0,ΦX0 ⊕ δU ⊕ EΩ(X0, U, δ)) , (18)

V0,δ(U) = δU ⊕ EV (U, δ), (19)
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3 FLOWPIPE APPROXIMATION

where CH(X,Y ) denotes the convex hull of sets X and Y , and EΩ and EV are convex sets

overapproximating the error. Error terms of different complexities are known. We recall the

simplest form

EΩ(X0, U, δ) = α(X0, U)B, (20)

EV (U, δ) = β(U)B, (21)

where B denotes the unit ball of the norm, B = {x | ‖X‖ ≤ 1}. Let ‖A‖ be the norm of a

matrix A, and ‖X‖ = supx∈X‖X‖ be the norm of a set X. Note that any norms can be used,

as long as the matrix norm is consistent with the vector norm used to define the norm of the

set. If ‖A‖ = 0, then α(X0, U) = 0 and β(U) = 0, otherwise

α(X0, U) = (e‖A‖δ − 1− ‖A‖δ)(||X0||+ ||U ||/‖A‖), (22)

β(U) = (e‖A‖δ − 1− ‖A‖δ)(||U ||/‖A‖). (23)

Given the approximations Ω0,δ(X0, U) and V0,δ(U) as defined above, we construct the

flowpipe approximation using the sequence

Ψ0,tk+1
= Ψ0,tk ⊕ eAtkV0,δk(U),

Ωtk,tk+1
= eAtkΩ0,δk(X0, U)⊕Ψ0,tk ,

(24)

with Ψ0,0 = 0. Before showing that this sequence indeed covers the reachable set, we first

show that the Ψ0,tk overapproximates the input convolution Y0,tk .

Lemma 3.9 Y0,tk ⊆ Ψ0,tk

Proof 5 With tk+1 = tk + δk and Lemma 3.6,

Y0,tk+1
= Y0,tk ⊕ e

AtkY0,δk .

With Lemma 3.4 and (17),

Y0,δk = Reachδk,δk(A,U, 0) ⊆ V0,δk(U).

Combining the above two equations, we obtain

Y0,tk+1
⊆ Y0,tk ⊕ e

AδkV0,δk(U).

The conclusion follows by induction.

Now we establish the main result of this section: The sequence Ωk := Ωtk,tk+1
covers the

reachable set.
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3 FLOWPIPE APPROXIMATION

Proposition 3.10 Given a sequence of time steps δ0, δ1, . . . , δN−1 with tN = T , where

tk =
∑k−1

i=0 δi, the sequence Ωk := Ωtk,tk+1
defined by (24) satisfies (12).

Proof 6 With Lemma 3.7, we have

Reachtk,tk+1
(A,U,X0) = eAtkReach0,δk(A,U,X0)⊕ S0,tk ,

and with Lemma 3.9,

Reachtk,tk+1
(A,U,X0) ⊆ eAtkReach0,δk(A,U,X0)⊕Ψ0,tk .

Then by induction with (17) as base case,

Reachtk,tk+1
(A,U,X0) ⊆ Ωtk,tk+1

. (25)

The conclusion follows, again by induction, with Lemma 3.8.

3.3 Time-Varying Dynamics

We now consider a dynamic matrix At and an input set Ut that change over time. We restrict

ourselves to piecewise constant changes: Let Ai be a sequence of matrices, let Ui be a sequence

of sets, and let s0 = 0, s1, s2, . . . be an increasing sequence of switching times, such that

At = Ai and Ut = Ui for si ≤ t < si+1.

For simplicity, we assume that every si coincides with one of the time points tk of our variable

step algorithm, where tk =
∑k−1

j=0 δj . This is easily enforced, since the δk, and therefore tk,

can be chosen arbitrarily. For a given time point tk, let Ik be the index i of the last switch in

dynamics that comes before tk:

Ik = argmax
i
{si | si ≤ tk}.

Let Ω0,δ(A,U,X) and V0,δ(A,U) be functions of δ as defined in (17). Let Ψ0,t(A,U) be

defined such that Y0,t(A,U) ⊆ Ψ0,t(A,U). With Lemma 3.9 we know that Ψ0,t(A,U) can be

computed by choosing an arbitray increasing sequence p0 = 0, p1, p2, . . . , pm = t and

Ψ0,pk+1
(A,U) = Ψ0,pk(A,U)⊕ eApkV0,pk+1−pk(A,U). (26)

We propose the following variable time step, variable dynamic algorithm. On the basis, it

proceeds like the variable time step algorithm. When a switch in dynamics occurs, say at time

si, the algorithm restarts with a new initial set of states Ξi. This new set is the set of states

reachable at exactly time si. Note that this is quite different from restarting the algorithm
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3 FLOWPIPE APPROXIMATION

with some Ω, since Ω overapproximates the reachable states over a time interval. While Ω is

a convex set that overapproximates a nonconvex set, the reachable states at exactly time si is

always a convex set. If Ut = 0, Ξsi can even be computed exactly. In addition, we are free to

vary the time step at any stage in the algorithm.

Let Φi, Ψ̂0,sk , Ξsi+1 and Ωtk,tk+1
be defined by

Φi+1 = eAi(si+1−si)Φi,

Ψ̂0,si+1 = eAi(si+1−si)Ψ̂0,si ⊕Ψ0,si+1−si(Ai, Ui),

Ξi = ΦiX0 ⊕ Ψ̂0,si ,

Ωtk,tk+1
= eAIk (tk−sIk )Ω0,δk(AIk , UIk ,ΞIk)⊕Ψ0,tk−sIk (AIk , UIk),

(27)

with Φ0 = I, Ψ̂0,0 = 0. Intuitively, we can interpret the sequence (27) as follows. It constructs

an overapproximation of the reachable states as a sequence of sets Ωtk,tk+1
, each covering the

reachable states over the time interval [tk, tk+1]. Ωtk,tk+1
is obtained by superimposing two

components. Both are defined with reference to the last switching time, sIk . The first term is

obtained from ΞIk , which are the reachable states at the last switch, by letting time elapse

over an interval of δk = tk+1 − tk time units, and finally mapping the result according to the

autonomous dynamics (a matrix exponential). The second term is the input convolution since

the last switch, i.e., after tk − sIk time units. Note that the next switch in dynamics takes

place when tk = si+1, so the term Ψ0,tk−sIk = Ψ0,si+1−sIk can be used to compute the next

element of the sequence Ψ̂0,si+1 . Similarly, eAIk (tk−sIk ) = eAIk (si+1−sIk ) constitutes the next

element of the sequence Φi+1.

We now show that the sequence Ωtk,tk+1
in (27) indeed overapproximates the reachable

states. We start by showing that Ψ̂0,si+1 is an overapproximation of the input convolution.

Lemma 3.11 Y0,si(At, Ut) ⊆ Ψ̂0,si.

Proof 7 With Lemma 3.6 and Lemma 3.5,

Y0,si+1(At, Ut) = eAi(si+1−si)Y0,si(At, Ut)⊕ Y0,si+1−si(Ai, Ui). (28)

The conclusion follows by induction with the base case Y0,0 = 0 = Ψ̂0,0.

With the above approximation of the input convolution, we can show that Ξi is an approxi-

mation of the reachable set of states at the time point si. Recall that Reacht,t denotes the

states reachable at exactly time t.

Lemma 3.12 Reachsi,si(At, Ut, X0) ⊆ Ξi.
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Proof 8 It is easy to show with induction that

Reachsi+1,si+1(At, 0, X0) = eAi(si+1−si)Reachsi,si(At, 0, X0) = Φi+1X0. (29)

Applying superposition followed by Lemma 3.11 we get

Reachsi+1,si+1(At, Ut, X0) = Reachsi+1,si+1(At, 0, X0)⊕ Reachsi+1,si+1(At, Ut, 0)

= Φi+1X0 ⊕ Y0,si+1(At, Ut)

⊆ Φi+1X ⊕ Ψ̂0,si+1 = Ξi+1

Having approximations for the reachable states at the time points si, we can use the split

and shift properties to obtain approximations over the time intervals between those points.

We require two more auxiliary properties before we can show correctness of (27). The first

auxiliary property is a simple consequence of the so-called semi-group property of the reachable

set: We can exchange the durations of two nested time elapse operations. Note that Reach0,t1

describes states reachable over an interval of time and Reacht2,t2 the states reachable at one

time point t2.

Lemma 3.13 Reach0,t1(A,U,Reacht2,t2(A,U,X)) = Reacht2,t2(A,U,Reach0,t1(A,U,X)).

The second auxiliary property allows us to split the time elapse operator into two parts that

are easier to compute. It assumes that the dynamics are constant in the time interval [t1, t3],

but makes no assumptions about the dynamics before t1.

Lemma 3.14 (split) Given t1 ≤ t2 ≤ t3, with At = A for t1 ≤ t < t3,

Reacht2,t3(At, Ut, X) = eA(t2−t1)Reach0,t3−t2(A,U,Reacht1,t1(At, Ut, X))

⊕ Y0,t2−t1(A,U). (30)

Proof 9 To save space, we shall denote Reach with R in this proof.

Rt2,t3(At, Ut, X) = R0,t3−t2(At+t2 , Ut+t2 , Rt2,t2(At, Ut, X))

= R0,t3−t2(A,U,Rt2,t2(At, Ut, X)).

Rt2,t2(At, Ut, X) = Rt2,t2(At, 0, X)⊕ Y0,t2(At, Ut)

= eA(t2−t1)Rt1,t1(At, 0, X)⊕ eA(t2−t1)Y0,t1(At, Ut)⊕ Y0,t2−t1(A,U)

= eA(t2−t1)(Rt1,t1(At, 0, X)⊕ Y0,t1(At, Ut))⊕ Y0,t2−t1(A,U))

= eA(t2−t1)Rt1,t1(At, Ut, X)⊕ Y0,t2−t1(A,U).
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Inserting this into the first equation yields

Rt2,t3(At, Ut, X) = R0,t3−t2(A,U, eA(t2−t1)Rt1,t1(At, Ut, X)⊕ Y0,t2−t1(A,U))

= eA(t2−t1)R0,t3−t2(A, 0, Rt1,t1(At, Ut, X))⊕R0,t3−t2(A,U,Y0,t2−t1(A,U))

The last term involves constant A and U , so we can apply Lemma 3.13 to it, then expand

again using superposition:

R0,t3−t2(A,U,Y0,t2−t1(A,U)) = R0,t3−t2(A,U,Rt2−t1,t2−t1(A,U, 0))

= Rt2−t1,t2−t1(A,U,R0,t3−t2(A,U, 0))

= Rt2−t1,t2−t1(A, 0, R0,t3−t2(A,U, 0))⊕Rt2−t1,t2−t1(A,U, 0)

= eA(t2−t1)R0,t3−t2(A,U, 0))⊕ Y0,t2−t1(A,U, 0).

Inserting this in the previous equation allows us to collect the terms involving eA(t2−t1), and

then combine them using superposition:

Rt2,t3(At, Ut, X) = eA(t2−t1)R0,t3−t2(A, 0, Rt1,t1(At, Ut, X))

⊕ eA(t2−t1)R0,t3−t2(A,U, 0))⊕ Y0,t2−t1(A,U, 0)

= eA(t2−t1)(R0,t3−t2(A, 0, Rt1,t1(At, Ut, X))⊕R0,t3−t2(A,U, 0))⊕ Y0,t2−t1(A,U, 0)

= eA(t2−t1)(R0,t3−t2(A,U,Rt1,t1(At, Ut, X))⊕ Y0,t2−t1(A,U, 0).

We now have all the tools to show the main result of this section, which is that the sequence

Ωtk,tk+1
in (27) indeed overapproximates the reachable states.

Proposition 3.15 The sequence Ωk := Ωtk,tk+1
defined by (27) satisfies (12).

Proof 10 According to Lemma 3.14,

Reachtk,tk+1
(At, Ut, X0) = eAIk (tk−sIk )Reach0,δk(AIk , UIk ,ReachsIk ,sIk (At, Ut, X0))

⊕ Y0,tk−sIk (AIk , UIk).

With Lemma 27, Lemma 3.9, and (17) we get

Reachtk,tk+1
(At, Ut, X0) ⊆ eAIk (tk−sIk )Ω0,δk(AIk , UIk ,ΞIk)⊕Ψ0,tk−sIk (AIk , UIk).

The conclusion follows by induction with Lemma 3.8.
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The downside of the algorithm in (27) is that at every iteration, the input convolution has

to be recomputed starting from zero up to the last switching time. This cost is much larger

than that of the variable time step algorithm. An efficient approximation of the computation

of the input convolution is necessary. The propagation of the initial set with autonomous

dynamics, ΦiX0, can be computed efficiently and does not need to be approximated. It

suffices therefore to approximate Ψ̂0,si . Note that, if one accepts the resulting error, the input

accumulation can be computed in a single step for the interval between each switching time.

A sliding window calculation might be a good compromise. In a stable system, the influence

of the old inputs decreases with time.

In the next section we will outline how to efficiently compute a flowpipe cover using

support functions.

3.4 Flowpipe Approximations using Support Functions

We extend the results from Sect. 2.2 to flowpipes by applying them pointwise over time.

For affine dynamics, Xt is convex for any given t, so Xt can be represented by its support

function. The entire flowpipe can be described by a support function that is parameterized

over time. Formally, let the support function over time be s`(t) = ρXt(`). As a straightforward

consequence of (3), the functions s`(t) describe the flowpipe exactly, i.e.,

Xtb,te =
⋃

tb≤t≤te

⋂
`∈Rn

{
`Tx ≤ s`(t)

}
.

We now describe how approximations of s`(t) can be used to derive an approximation of Xtb,te .

Given an interval [tb, te], a direction `, and an accuracy bound ε > 0, we construct a piecewise

linear function s+
`,ε : [tb, te]→ R with

s+
`,ε(t)− ε ≤ ρXt(`) ≤ s

+
`,ε(t) for all t ∈ [tb, te].

A method to effectively compute s+
`,ε(t) is described in [10]. Briefly summarized, the support

function is computed at discrete time points. The continuous bound is then obtained from

a linear interpolation between the discrete points, augmenting (bloating) it enough to be

conservative between the sampling points. The details of the construction are omitted since

they are somewhat technical and the remainder of this paper applies to any s+
`,ε(t) as long as

it is piecewise linear.

Assume we have computed s+
`i,ε

(t) for a set of directions L = {`1, . . . , `m}. These functions

define a flowpipe approximation as follows. For all t, the outer approximation

Ωt = dXte+L =
⋂
`i∈L

{
`Tix ≤ s+

`i,ε
(t)
}

(31)
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A

CB

A’

C’

B’

Figure 3: A flowpipe approximation constructed with the axis directions as templates, starting from

the initial set X0 = ABC. At time t′, the approximation is the bounding box of the reachable set

Xt′ = A′B′C ′

satisfies Xt ⊆ Ωt. Taking the union over the time interval [tb, te], an outer approximation of

the flowpipe segment is

Ωtb,te =
⋃

tb≤t≤te

Ωt, with Xtb,te ⊆ Ωtb,te .

This flowpipe approximation is defined as the union of infinitely many convex polyhedra, see

Fig. 3. But for our reachability algorithm the flowpipe approximation needs to produce finitely

many convex sets. To transform this infinite union into a finite one, we consider piecewise

linear approximations s+
`i,ε

(t). In a time interval where these are linear for all directions `i,

say s+
`i,ε

(t) = αit+ βi, we have

Ωt =
⋂
`i∈L

{
`Tix ≤ s+

`i,ε
(t)
}

=
⋂
`i∈L

{
`Tix ≤ αit+ βi

}
=
⋂
`i∈L

{
`Tix− αit ≤ βi

}
. (32)

The latter term is a convex polyhedron in x and t. Their union over the time interval [tb, te] is

Ωtb,te =
⋂
`i∈L

{
`Tix− αit ≤ βi

}
∩ {tb ≤ t ≤ te}. (33)

If s+
`i,ε

(t) is piecewise linear concave over [tb, te], then its linear bounds are of the form∧
j∈Ji

s+
`i,ε

(t) ≤ αji t+ βji ,

and we also obtain a convex polyhedron

Ωtb,te =
⋂

`i∈L,j∈Ji

{
`Tix− α

j
i t ≤ β

j
i

}
∩ {tb ≤ t ≤ te}. (34)

Support functions can be used to approximate the sequence Ωtk,tk+1
in (27) arbitrarily

well, but there is a catch: Each evaluation of the support function of Ωtk,tk+1
requires to

evaluate the support function of Ψ̂0,sIk
, which approximates the input convolution at the last

time the dynamics switched before tk. Evaluating the support function of Ψ̂0,sIk
itself triggers
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a sequence of support function computations, which means that the evaluation cost would

grow linearly with k. The overall complexity of the algorithm with K time steps would be

O
(
K2
)
, which is problematic since in general K can become arbitrarily large. In the next

section we will present a solution that avoids this problem. The idea is to approximate Ψ̂0,sIk

by a zonotope.

4 Complexity Assessment for Flowpipe Approximation

In this section, we compare different set representations, i.e., zonotopes, polyhedra, and

support functions, in terms of the runtime cost for approximating flowpipes. Our analysis

goes in more detail than the usual O (·) notation to be sure that no opportunity for constant

speed-up is missed. The results will then be used to optimally combine set representations in

the following section.

4.1 Approximating the Input Convolution

We consider dynamics of the form (5), i.e., ẋ = Ax+ u, with u(t) ∈ U and x(0) ∈ X0. At a

time instant t, the states reachable with theses dynamics are

Xt = eAtX0 ⊕
∫ t

0
eAsUds.

The problematic term is the input convolution

Yt =

∫ t

0
eAsUds = lim

δ→0

bt/δc⊕
k=0

eAδkδU .

The matrix eAδk is different for each k, so the Minkowski sum leads to infinitely many vertices

and constraints as δ → 0. Even if U is a polyhedron, Yt can be a smooth set [25]. An outer

approximation of Yt is obtained by using a finite sum and bloating δU by a sufficient amount.

Let ‖·‖p be a norm, Bp the unit ball of the norm, and t = Nδ. We start with a simple version

of an error compensation term. More precise compensation terms will be discussed below. An

error compensation term

Eδ = βδ‖U‖Bp (35)

with bloating factor

βδ =

∞∑
i=1

‖A‖ipδi+1

(i+ 1)!
=
e‖A‖pδ − 1− ‖A‖pδ

‖A‖p
, (36)

leads to an outer approximation of Yt [19]

Ŷδt =

N−1⊕
k=0

eAδk
(
δU ⊕ Eδ

)
. (37)
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Other approximations of Yt have been proposed, e.g., in [?, ?]. The approximation in (37) is

within distance εδ = δe‖A‖p(t+δ)‖U‖ according to [19], but this is a very conservative estimate.

To illustrate this, consider that it results in the same bound for a stable matrix A as for the

unstable matrix |A|. However, we can explicitly represent and measure the error by splitting

the sequence into two terms

Ŷδt = Ȳδt ⊕ Eδt , (38)

with

Ȳδt =

N−1⊕
k=0

eAδkδU , Eδt =

N−1⊕
k=0

eAδkEδ. (39)

The first term, Ȳδt , is an underapproximation of Yt, since it corresponds to keeping the input

u piecewise constant over intervals of duration δ. The second term, Eδt , compensates such that

arbitrary switching of u within the intervals is covered as well.

Lemma 4.1 Conservative over- and underapproximations of Yt are given by Ȳδt ⊆ Yt ⊆ Ŷδt .

The diameter of Eδt bounds the approximation error.

Lemma 4.2 The Hausdorff distance between the input convolution and its approximation is

dH(Yδt ,Yt) ≤ dH(Ȳδt ,Yt) ≤ ‖Eδt ‖2.

4.1.1 Comparison of Different Set Representations

In the following, we discuss different ways to compute the approximation in (37).

Using Zonotopes Since zonotopes are closed under linear map and Minkowski sum, and

both can be computed very efficiently, they are well suited for computing and representing

Ŷδt . In many case studies, both U and Eδ are indeed zonotopes, e.g., hyperboxes (Bp = B∞).

If Eδ is not a zonotope, it can be overapproximated with one without loss of completeness,

since δ can be reduced to compensate for the difference. We briefly show the reduction. For

any p-norm and q-norm with q > p,

‖X‖q ≤ ‖X‖p ≤ n
(

1
p
− 1
q

)
‖X‖q.

As stated above, Ŷδt approximates Yt within distance εδ in the p-norm. Using the ∞-norm,

B∞ has n generators. The error bound is εδ in the ∞-norm and εδn
1
p in any p-norm. To meet

the desired error bound in any p-norm, it therefore suffices to use a smaller time step δ′ such

that βδ′n
1
p ≤ βδ. Since βδ is superlinear in δ, δ′ ≥ n−

1
p δ. 1

1A different route would be to approximate Eδ with a zonotope up to a given error bound εz. The final

error would then be εδ + εz. However, a zonotope approximating Eδ with error εz can require O

(
c(n)ε

−2
n−1
n+2

z

)
generators. [5]
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Since Eδt is a zonotope that is computed anyway to obtain Ŷδt , we can use it to measure

the approximation error εδ since

dH(Ȳδt ,Yt) ≤ ‖Eδt ‖2 = rad(Eδt ).

If Eδ is a zonotope with kB generators, then computing its radius requires n(NkB + 1)

operations.

Assuming that U is a zonotope with kU generators and Eδ is a zonotope with kB generators,

then Ŷδt is a zonotope with N · (kU + kB) generators. The matrices eAδk can be computed

using the sequence M0 = I, Mk+1 = eAδMk with (N − 1) 2n3 operations, assuming that eAδ is

known. Each term of the sum can then be computed with 2n2(kU + kB + 2) operations. The

summation consists of summing the centers and joining the generator lists, i.e., Nn numerical

operations. The result of this section can be summarized as follows:

Lemma 4.3 Assuming U is a zonotope with kU generators and eAδ is known. Computing Ŷδt
up to an error εδ in the p-norm is possible with zonotopes using a total of

Nn
1
2p ·
(
3n3 + 2n2 · (kU + 2) + n

)
numerical operations.

Using Polyhedra Using polyhedra in constraint form, Ŷδt is prohibitively expensive to

compute, since the number of constraints may grow exponentially during the summation.

Recall that if U and Eδ are zonotopes, then Ŷδt is a zonotope. The number of facets F

(n− 1-dimensional faces) of a zonotope with k generators in n dimensions is bounded by

F ≤ 2

(
k

n− 1

)
≤ 2

(
ek

n− 1

)n−1

,

where e is Euler’s constant. If Ŷδt has N · (kU + kB) generators, then the number of facets is

bounded by (
N · (kU + kB)

n− 1

)
≤ 2

(
eN · (kU + kB)

n− 1

)n−1

.

If the desired error bound εδ is given, (36) provides an upper bound on δ, for which the above

inequality gives an upper bound on the number of facets. The number of facets grows quickly

with N = t/δ, and prohibitively so in higher dimensions (large n).

Using Support Functions The support function of Ŷδt using the bloating factor compen-

sation in (35) is

ρŶδt
(`) =

N−1∑
k=0

δρU (eAδk
T
`) + βδ‖eAδk

T
`‖ p

p−1
. (40)
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The directions eAδk
T
` can be computed with the sequence `0 = `, `k+1 = eAδ

T
`k, up to k = N−1.

This requires 2n2N operations. Let L(U) be the number of operations for computing the

support function of U . Computing the vector norm is O (n). In total, computing ρŶδt
(`)

involves N · (2n2 + L(U) + n) operations [18].

If U is a zonotope with kU generators, then L(U) = 2n(kU + 1), so computing the support

of Ŷδt involves

N · (2n2 + 2n(kU + 2)) (41)

operations. We now assume the infinity norm is used to measure the error (B∞ being a

zonotope with n generators). Comparing this bound with the one for zonotopes, we note that

the zonotope representation involves roughly n times the operations of computing the value of

the support function in a single direction. Using the support function to construct a bounding

box approximation requires evaluating 2n directions. This leads to the following observation:

Observation 1 A zonotope overapproximation of Yt with error εδ in the ∞-norm can

be computed with less operations than a bounding box approximation of Yt using support

functions.

Clearly the zonotope approximation is much more precise than the bounding box ap-

proximation: The bounding box approximation is only tight (up to error εδ) in the axis

directions, while the zonotope approximation is tight in all directions. The Hausdorff distance

(in Euclidean norm) of the bounding box approximation is
√
n(d+2εδ), where d is the diameter

of Yt. The Hausdorff distance of the zonotope approximation is
√
nεδ, which is independent

of the size of Yt.

4.1.2 Alternative Compensation Terms

More precise version of the error compensation term in (37) are known, e.g., [18, 17, ?, ?].

We present a version proposed originally in [?] and used in slightly different form in [12].

We need the following notation. The symmetric interval hull of a set S, denoted �(S), is

�(S) = [−|x1|; |x1|]× . . .× [−|xd|; |xd|] where for all i, |xi| = sup{|xi| | x ∈ S}. Let M = (mi,j)

be a matrix, and v = (vi) a vector. We define as |M | and |v| the element-wise absolute values

of M and v, i.e., |M | = (|mi,j |) and |v| = (|vi|). We use the following truncated versions of

the matrix exponential:

Φ1(A, δ) =

∞∑
i=0

δi+1

(i+ 1)!
Ai, Φ2(A, δ) =

∞∑
i=0

δi+2

(i+ 2)!
Ai, (42)
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which are computed similarly to a matrix exponential. If A is invertible, Φ1 and Φ2 can be

computed as

Φ1(A, δ) = A−1
(
eδA − I

)
, Φ2(A, δ) = A−2

(
eδA − I − δA

)
Otherwise, they can be computed as submatrices of the block matrix

eAδ Φ1(A, δ) Φ2(A, δ)

0 I Iδ

0 0 I

 = exp


Aδ Iδ 0

0 0 Iδ

0 0 0

.
To bound the approximation error we use the error term

EΨ(U , δ) = � (Φ2(|A|, δ) � (AU)) .

We have the following bounds on ρYδ(`).

Lemma 4.4 [12] δρU (`)− ρ−AΦ2(A,δ)U (`) ≤ ρYδ(`) ≤ δρU (`) + ρEΨ(U ,δ)(`)

This leads to the following approximation of Yδt :

Ŷδt =

N−1⊕
k=0

eAδk
(
δU ⊕ EΨ(U , δ)

)
, (43)

4.1.3 Adaptive Time Steps

We now consider the problem of computing Ŷδt such that a given error bound is met. We will

measure the error using the compensation term

Eδt =
N−1⊕
k=0

eAδkEδ.

Since 0 ∈ Eδ, the sum is monotonically increasing. Each term in the sum contributes additively

to the final set. We propose the following heuristic to guarantee a final error of radius less

than a given error ε. The goal is to ensure that

‖Eδt ‖2 = ‖rEδt ‖2 ≤ ε.

Since the absolute row sum is simply the vector sum

rEδt
=
∑N−1

k=0
reAδkEδ , (44)

we can cheaply compute its value at the k-th step. We can then compare it to a target value,

and decrease the time step δ until the target value is met. We choose as target value the
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linear interpolation kt/(N − 1)ε. Since the radius of the error term (35) is quadratic in δ, we

can always find a δ such that ‖Eδ‖ ≤ δ/tε.

A straightforward implementation to compute Ŷt with adaptive time steps δi would be

Ŷti+1 = eAδiŶti ⊕ (δi U ⊕ Eδi), (45)

with ti =
∑i−1

j=0 δi. However, this is inefficient if the complexity of the set representation Ŷti is

increasing with i. In the case of zonotopes, for example, Ŷti has i · (kU +kB) generators. If the

zonotope is replaced with a simpler approximation during the computation, the approximation

error propagates and possibly augmented by the linear map; this is known as the wrapping

effect.

The sequence from (24) is more efficient and free of the wrapping effect [15], and is used

with varying time steps in [10]:

Φi+1 = eAδiΦi, (46)

Ŷti+1 = Φi(δi U ⊕ Eδi)⊕ Ŷti , (47)

with Φ0 = I, Ŷt0 = 0. In case of zonotopes, the number of generators of Ŷti is i · (kU + kB)

like in (45), but here they are not subjected to linear mapping in the next iteration. If the set

is approximated, the approximation error is accumulated, but not amplified by a linear map.

It can therefore increase linearly, but not exponentially with the number of iterations.

Compared to the fixed-step algorithm, the only additional cost is the computation of the

matrix exponential eAδ for different values of δ. This cost can be minimized by scaling the

time step in powers of two, i.e., δ = 2jδ0, j ∈ Z. In conclusion, we can compute Ŷt using

adaptive time steps without significant penalty in cost or precision.

4.2 Approximating the Autonomous Dynamics

The autonomous dynamics are

ẋ = Ax,

and the solution at a given time point t is

Xt = eAtX0.

This allows us to propagate the approximation of any time interval forward in time. If

X0,δ ⊆ Ω0,δ, then

Xt,t+δ ⊆ eAtΩ0,δ,

if there are no inputs. This linear map is reversible (eAt is nonsingular), so computing this

image can be carried out efficiently for all set representations mentioned in this paper. The
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X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

Figure 4: A reach set cover Ω̂0, Ω̂1, . . . computed with zonotopes using the implementation in [2]

(solid)

difficulty lies in the initial set Ω0,δ. All approximation models published so far in the literature

use the convex hull operation, which is natural since the convex hull between two sets is the

set of all points on the linear interpolation between them. Taking the convex hull of X0 and

Xδ = ΦX0 is thus equivalent to linear interpolation between the sampling times. Consider the

approximation model from (18),

Ω0,δ(X0, U) = CH (X0,ΦX0 ⊕ δU ⊕ EΩ) .

Using Zonotopes Zonotopes are not closed under convex hull, i.e., the convex hull of two

zonotopes is not necessarily a zonotope. An overapproximation from [14] is

CH(X0, e
AδX0) ⊇ 1

2
(c+eAδc, 〈v1 +eAδv1, . . . , vk+eAδvk, v1−eAδv1, . . . , vk−eAδvk, c−eAδc〉).

(48)

Assume that X0 is a zonotope with kX generators, U a zonotope with kU generators and

EΩ a zonotope with n generators. The overapproximation in (48) is very efficient, with

2n2(kX + 1) + 2n(kX + 2) operations; note that it doubles the number of generators. Its error

is bounded by
∑

i‖vi − eAδvi‖. The accuracy can be improved arbitrarily by taking smaller

time step δ, since limδ→0 e
Aδ = I. However, this may increase the number of sets prohibitively.

To combine the input convolution with the convex hull approximation (48) is slightly more

involved. If 0 ∈ U , we can use

Ω0,δ(X0, U) = CH (X0,ΦX0)⊕ δU ⊕ EΩ.

The number of operations to compute Ω0, . . . ,ΩN is 2n2(kX + 1) + 2n(kX + 4) for the initial

set and N · 2n2(2kX + kU + n+ 2) for the propagation.

An illustration of the approximation with zonotopes is shown in Fig. 4. It uses a slightly

more sophisticated approximation model than the one presented in this section.

Using Polyhedra Using polyhedra in constraint representation, both the Minkowski sum

and the convex hull operation can increase the number of constraints exponentially in n. This
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is one of the major obstacles in applying polyhedra to this type of reachability computation.

Using Support Functions The convex hull operation corresponds to taking the maximum

of the support functions. For the approximation of the initial set we get

ρΩ0,δ
(`) = max

(
ρX0(`), ρX0(ΦT`) + δρU (`) + ρEΩ(`)

)
. (49)

The support function of the sequence Ωk = eAkδΩ0,δ we can compute with `0 = `,

`k+1 = eAδ
T
`k, (50)

ρΩk(`) = max
(
ρX0(`k), ρX0(`k+1) + δρU (`k) + ρEΩ(`k)

)
. (51)

Note that the value of ρX0(`k+1) can be reused in the computation of ρΩk+1
(`). Each iteration

therefore requires computing one value of the support of X0, one of U , and one of EΩ.

Computing the support of Ω0,Ω1, . . . ,ΩN in a given direction ` requires N(2n2 + L(X0) +

L(U) + n) operations, where L(X0) be the number of operations for computing the support

function of X0. If X0 and U are zonotopes with kX and kU generators, then L(X0) = 2n(kX+1)

and L(U) = 2n(kU + 1). Per direction we get

N · (2n2 + 2n(kX + kU + 5/2))

operations, which is practically the same as for computing Ŷδt over N time steps. Comparing

the cost to zonotopes, we make similar observation as for the input convolution:

Observation 2 A zonotope overapproximation of Ω0,Ω1, . . . ,ΩN can be computed with

roughly the same number of operations than a bounding box approximation using support

functions (assuming kX ≥ n). The approximation quality of the zonotopes, however,

depends on the quality of the zonotope approximation of X0, its generators, and the time

step.

While for the input convolution it seem that from a practical point of view, U can be

approximated reasonably well be a zonotope, this need not be the case for the autonomous

dynamics. In the case of hybrid systems, X0 may be the result of an intersection operation.

Hence, the approximation quality may be limited and the initial error may be as large as the

radius of the initial set.

An illustration of the approximation with support functions with varying degrees of

precision is shown in Fig. 4.
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X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

Figure 5: A reach set cover Ω̂0, Ω̂1, . . . computed with support functions using the implementation in

[12] (solid), evaluating the support function in the axis directions (left) and in 256 uniformly distributed

directions (right)

4.3 Approximating the Nonautonomous Dynamics

We now turn to the general case, where both X0 and U may be nonempty. According to

the superposition principle, the reachable set approximation is the Minkowski sum of the

autonomous approximation Ωi and the input convolution,

Ω̂tk,tk+1
= eAtkΩ0,δk ⊕ Ŷtk .

Using Zonotopes Since the Minkowski sum essentially amounts to joining the generators,

computing the sequence Ω̂tk,tk+1
poses no problem if both Ω0,δk and Ŷtk are zonotopes.

Using Polyhedra Using polyhedra in constraint representation, the Minkowski sum can

increase the number of constraints exponentially in n. This can be seen from the fact that

each non-redundant constraint of a polyhedron defines a facet, i.e., an n − 1 dimensional

face. The facets of P ⊕ Q are generated by combinations of a-dimensional faces of P and

b-dimensional faces of Q such that a+ b = n− 1. Let fP (i) be the number of i-dimensional

faces of P . If P has mP linear inequalities, an upper bound on fP (i) is
(
mP
n−i
)
. There may be

as many as
∑n−1

i=0 fP (i)fQ(n− 1− i) facets in P ⊕Q.

Using Support Functions Since the Minkowski sum reduces to the scalar sum, computing

the support function of the sequence Ω̂tk,tk+1
is efficient for all previously mentioned set

representations of Ω0,δk and Ŷtk .

5 Combining Support Functions and Zonotopes

In this section we use the observations of the previous sections to devise algorithms that

combines support functions and zonotopes. In Sect. 4.1, we saw that zonotopes are efficient
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for computing the input convolution. This lead to an ε-close approximation for the cost of a

bounding box approximation using support functions, which is much coarser. In many case

studies, the inputs are indeed zonotopes. In Sect. 4.2, we saw that zonotopes are similarly

efficient, but that the approximation quality depends very much on the time step, and whether

the initial set is a zonotope. Contrary to the input set, the initial set is frequently not a

zonotope, in particular if applied to hybrid systems.

Our conclusion is to use support functions for the autonomous part, zonotopes for the

input convolution, and combining the two. In the following, we will examine the costs and

benefits compared to the conventional support function approach.

5.1 Flowpipe Approximation Using Support Functions

In the following we show that zonotopes can be used to compute, at equal cost, a support

function approximation with higher precision than using support functions directly.

According to Lemma 4.3, the construction a zonotope approximation ZY = ŶtN is possible

with

N ·
(
3n3 + 2n2 · (kU + 2) + n

)
operations, with the approximation error being explicitly represented by a subset of the

generators. The zonotope has N(kU + n) generators, where kU is the number of generators of

the input set U . Recall that the support function of a zonotope with center c and generators

v1, . . . , vkP is

ρP (`) = cT`+

kP∑
i=1

∣∣vTi`∣∣ .
Computing the support of ZY therefore requires 2n+ 2N(n2 + nkU ) operations. The total

cost of computing first ZY and then the support in L directions is

LN ·
(

2n2 + 2nkU +
3n3 + 2n2 · (kU + 2) + n

L

)
+ Ln

If L ≥ 2n, N ≥ n, and n ≥ 2, a simplified upper bound is

LN ·
(

7
2n

2 + 3nkU + 3n
)
.

According to (41), computing the L values of the support function of Ŷtk directly requires

LN · (2n2 + 2nkU + 4n)

operations. For L ≥ 2n, i.e., at least bounding box directions, using the zonotope uses at most

2× the operations; and as L → ∞, using the zonotope is marginally faster. The downside

of using the zonotope is its memory consumption, since it requires to store 1 + N(n + kU )
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vectors with n elements each. Recall that zonotope and direct support function methods incur

the same error if the infinity norm is used.

The operation count above applies to computing the support of ŶtN , but covers also

intermediate results that are sufficient to compute the support of Ŷt0 , . . . , ŶtN−1 . Reducing the

number of generators on the fly can reduce the operation count, for the price of an increased

approximation error. Let the number of generators be kR, then the operation count (without

the reduction cost) is

LN ·
(

2n(kR + 1)

N
+

3n3 + 2n2 · (kU + 2) + n

L

)
.

Note that for kR ≥ n, the approximation error can be made εδ-tight in the axis directions,

i.e., no worse than a bounding box. The direct support function computation is O
(
LNn2

)
,

while the zonotope construction with kR = c · n generators is O
(
Lcn2 +Nn3

)
.

Observation 3 The zonotope construction amortizes with increasing L when L ≥ 2n.

Reducing the number of generators to kR = c · n, the zonotope allows the evaluation of

N
c+1 times the directions at cost equal to directly computing the support function.

The combination of the autonomous part (support function) and input convolution

(zonotope) is straightforward: it suffices to compute the support of the autonomous part and

the zonotope and then add the two values:

ρΩ̂tk,tk+1
(`) = ρΩ0,δk

(eAtk
T
`) + ρŶtk

(`).

Observation 3 indicates that this enables, for a given cost, a much higher precision, which is

governed by the ratio between the number of steps N and the degree c (generators divided by

n) of the simplified zonotope .

Potential Applications In the context of a support function, it is not trivial how the above

increase in precision manifests itself within practical bounds on N and L. The straightforward

way would be to approximate Ω̂tk,tk+1
with its outer polytope in many directions. Algorithms

to do this with an optimal number of directions are known, but the number is always high at

O
(
1/εn−1

)
for an error of ε [20]. So while the use of zonotopes would be beneficial relative

to support functions, any such procedure would not scale to higher dimensions. A more

promising use case is the intersection with another set. Recall that the support function of
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the intersection of Ω̂tk,tk+1
with, say, a guard set G is

ρΩ̂tk,tk+1
∩G(`) = inf

ν∈Rn
ρΩ̂tk,tk+1

(`− ν) + ρG(ν).

A similar problem is to decide whether Ω̂tk,tk+1
and G intersect at all, which is the case iff

inf
ν∈Rn

ρΩ̂tk,tk+1
(−ν) + ρG(ν) ≥ 0.

In both cases, the support function of Ω̂tk,tk+1
doesn’t necessarily need to be evaluated in

many directions, and in particular not exponentially many. Indeed, our experiments indicate

that the number of directions can in practice be low polynomial in n [13, 9].

So far the difference between support functions and zonotopes haven been quantitative

rather than qualitative. An application where the difference is more dramatic is discussed in

the next section.

5.2 Time-triggered Switching

We now turn the case of switching dynamics, where the switch is triggered at specific points

in time. This is a particular case of state-based triggering (one could include time as a state

variable), which simplifies reachability computation since only points, not intervals, of time

need to be taken into account. For piecewise affine dynamics, this means that the set of states

that takes the switch is convex, which is not the case in general.

We use the algorithm for switched dynamics from (27), and discuss its complexity for

different set representations. For the input convolution, we use the approximation Ŷt(Ai, Ui),

from Sect. 4.1. The algorithm computes the states Ωtk,tk+1
with time points tk =

∑k−1
i=0 δi,

defined by arbitrary time steps δ0, δ1, . . .. The dynamics Ai,Ui change at subset of tk that

we denote by si. Let the duration between switches be ∆i = si+1 − si. For a given tk, the

dynamics are AIk ,UIk , and they are active since the last switch at time sIk . Let Φ̂i, Ψ̂sk , Ξsi+1

and Ωtk,tk+1
be defined by Φ̂0 = I, Ψ̂0 = 0,

Φ̂i+1 = eAi∆iΦ̂i, (52)

Ψ̂si+1 = eAi∆iΨ̂si ⊕ Ŷ∆i(Ai, Ui), (53)

Ξi = Φ̂iX0 ⊕ Ψ̂si , (54)

Ωtk,tk+1
= eAIk (tk−sIk )Ω0,δk(AIk , UIk ,ΞIk)⊕ Ŷtk−sIk (AIk , UIk), (55)

To simplify the analysis, we now assume that the sets Ŷ∆i(Ai, Ui) are computed with N steps

each.
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Using Support Functions Directly Using the support function, we have

ρΩtk,tk+1
(`) = ρΩ0,δk

(AIk ,UIk ,ΞIk )(e
AIk (tk−sIk )T`) + ρŶtk−sIk (AIk ,UIk )(`).

Using formula (49) for Ω0,δk requires two evaluations of ρΞIk
(·) at each time step. We have

ρΞIk
(`) = ρX0(Φ̂T

i`) + ρŶsIk
(`).

The latter term poses a problem. Computing its value in the recursive sequence above

requires evaluating the support of Ŷ∆i for each i, which is O
(
Nn2

)
. So each evaluation of

ρΞIk
(`) is O

(
iNn2

)
. Without switching, the cost to compute ρΩtk,tk+1

(`) is O
(
kn2

)
, but it is

incremental in the sense that computing the value at tk+1 only adds O
(
n2
)

operations. The

combined cost for all Ωtk,tk+1
up to k = K is O

(
Kn2

)
. The switched case is not incremental,

since the intermediate results of ρŶ∆k
(`) can not be reused because of the changed dynamics.

The cost up to k = K with i switches is therefore O
(
KiNn2

)
. Assuming N time steps per

switch, we have K = iN at the end of the i-th switch, so the cumulated cost is O
(
i2N2n2

)
.

Observation 4 The total operation count per direction when using support functions

directly with i switchings and N time steps per switch is O
(
i2N2n2

)
. Since N can be an

arbitrarily large number (in practice often in the thousands), this makes the direct support

function computation unusable even for low-dimensional systems and moderate number of

switches.

Using Support Functions on Zonotopes Step-Wise We now follow the approach in

Sect. 5.1 and compute Ŷ∆i as well as Ψ̂si using zonotopes. The zonotope construction of

Ŷ∆i with kR = c · n generators is O
(
Nn3

)
. Since i such sets need to be constructed, we

have O
(
iNn3

)
as total construction cost, independent from the number of support function

evaluations. Each support function evaluation is O
(
cn2
)
. Evaluating the support of Ψ̂si as

above has complexity O
(
Kicn2

)
, with K = iN this gives a cumulative cost of O

(
ci2Nn2

)
.

As in Sect. 5.1, the generator reduction allows us to replace one factor of N with the order c

of the reduced zonotope. For c = 1, we obtain a bounding box approximation of Ŷ∆i , with

the approximation error discussed in Sect. 4.1.1.

We now examine the approximation error due to the generator reduction. The approxi-

mation is no longer tight due to the switching of dynamics: Computing the support of Ξi

in the axis directions requires the support of Ŷ∆i in other directions. The error can thus

be amplified. The sequence suffers from the wrapping effect if the generator reduction was
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carried out tight in the axis directions, as in Sect. 2.1.2. To demonstrate this, we reformulate

(53) to

Ψ̂si+1 = eAi∆iΨ̂si ⊕ Ŷ∆i(Ai, Ui) (56)

= eAi∆i · · · eA1∆1Ŷ∆0(A0, U0)⊕ · · · ⊕ eAi∆iŶ∆i−1(Ai−1, Ui−1)⊕ Ŷ∆i(Ai, Ui) (57)

The matrices before each term, e.g., Ŷ∆0(A0, U0), change with i. We can reinstate tightness

by reducing the generators so that they are tight with respect to the transformed axis

directions, but this requires us to keep the original generators in memory. The reduction

and transformation cost is O
(
i2(Nn2 +N logN)

)
, since all i input convolutions need to be

remapped and reduced at every step. Note that the memory consumption can be reduced by

storing the original zonotopes in compressed form (as a set of transformation matrices plus

the original generators).

Observation 5 Computing Ŷ∆i as zonotopes with cn generators is a factor N/(c + 1)

faster than using support functions directly. Keeping the original zonotopes and reducing

the mapped zonotopes at each step allows one to keep the approximation tight, at a price

of considerable increase in memory. The cost is quadratic in i, and therefore limited to a

moderate number of switches.

Using Support Functions on Zonotopes Globally We improve on the complexity by

computing Ψ̂si as a zonotope with reduced generators. As before, the zonotope construction

of Ŷ∆i with kR = c · n generators requires O
(
iNn3

)
operations as total construction cost,

independent from the number of support function evaluations. The zonotope construction

of Ψ̂si with kΨ = d · n generators requires essentially the reduction cost, which cumulates to

O
(
icn2 log cn

)
. As discussed above, the approximation is not tight and the approximation

error may be amplified by the wrapping effect. Both c and d can be kept fairly high to improve

the accuracy.

Each support function evaluation is O
(
dn2
)

with a cumulative cost of O
(
Kdn2

)
=

O
(
idNn2

)
for K = iN . The cost is now linear in both the number of switchings as well as

the time steps per switch. The key here is that d does not necessarily need to increase with i

to keep the approximation error acceptable.
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Observation 6 Computing Ψ̂si as zonotopes with dn generators is a factor iN/(d+ 1)

faster than using support functions directly. The approximation error is subject to the

wrapping effect, but the runtime scales linearly in both the time steps and the number of

switchings.

Note that the number of reduced generators does not necessarily need to be fixed in

advance; the approximation error can be bounded, and this bound can be used to find an

appropriate number of generators.

5.3 From Time- to State-Triggered Switching

In state-triggered switching, the switch from dynamics Ai to Ai+1 takes place not at a specific

point in time, but when the state enters a given guard set G. Depending on the semantics,

the switch takes place as soon as possible, which is called urgent or must semantics. In may

semantics, it may be nondeterministically delayed as long as a given staying condition S is

satisfied. For the purposes of reachability computation, both cases are similarly difficult, since

trajectories starting from the initial states may either way take the switch at different points

in time. There is thus a set of intervals on the time axis I ⊆ R≥0 such that t ∈ I whenever

Xt ∈ G. In the sequel we will assume that there is only a single such interval; our approach

extends to sequences of intervals by enumeration. The main difference with time-triggered

switching is that the set of states that takes the switch is nonconvex,

XI =
⋃
t∈I
Xt ∩ G.

Identifying the time interval I is the first step in the successor computation. It is necessarily

done only approximatively, and the accuracy of the time interval can impact the accuracy of

the reachable states. The approach proposed in [8] uses an optimization procedure on the

support function. This requires a certain number of support function evaluations and is thus

a good candidate for the use of zonotopes, as discussed in Sect. 5.1.

The second step is to construct an approximation of XI in the form of one or more

convex sets. In the support function algorithm from [12], the template hull (a polyhedron) is

constructed. A more refined version in [11] produces a minimal set of semi-template polyhedra

in space-time (with time as additional variable). The reason for the polyhedron construction is

that this simplifies the intersection with the guard set G, which is typically also a polyhedron.
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An alternative to this second step has been proposed in [?] and is called continuization.

It avoids the intersection step altogether. Instead, it replaces the state-based switch by two

time triggered switches, one at the beginning and one at the end of the time interval. In the

interior of the interval, an auxiliary dynamic Âi is used such that the trajectories of both Ai

and Ai+1 are captured. Let D be some domain that encloses XI, e.g., computed by a prior

coarse reachability run. The continuization procedure is sure to cover all reachable states if

for all x ∈ D,

CH(Aix⊕ Ui, Ai+1x⊕ Ui+1) ⊆ Âix+ Ûi.

This can be ensured, e.g., by letting Âi = 1
2(Ai +Ai+1) and

Ûi = CH
(

(Ai − Âi)D ⊕ Ui, (Ai+1 − Âi)D ⊕ Ui+1

)
.

We can now apply the time-triggered switching algorithm from Sect. 5.2 to the switching

sequence Ai, Âi, Ai+1.

6 Conclusions

In the literature on reachability analysis and, more particular, flowpipe approximation,

algorithms on zonotopes and support functions have so far been reported separately. Both set

representations scale very well with respect to the geometric operations used in reachability

analysis, but they also have their shortcomings. Zonotopes have the disadvantage that they

are not closed under intersection,2 and approximating the convex hull requires small time

steps. This limits also the capacity to cluster sets, so that an explosion in the number of sets

is more difficult to avoid.3 Support functions do not scale particularly well for intersection,

but by combining them with template polyhedra this problem can be mitigated. However,

the support function algorithms loose their efficiency when the dynamics change. One is

forced to construct an outer approximation in the form of a template polyhedron whenever

the dynamics change. Zonotopes do not have this shortcoming.

In this paper, we compared the complexity incurred by both set representations in detail,

for the case of flowpipe approximation with affine dynamics. Our finding is that zonotopes

are inherently suited for approximating the input convolution. This is not surprising, since

zonotopes are defined as the Minkowski sum of independent line segments, while the input

2In [?], it has been proposed to represent sets as the intersection of zonotopes. This removes the problem of

intersecting zonotopes with guards, but makes the computation of the Minkowski sum trickier.
3The problems with intersection and clustering can be avoided by switching from zonotopes to polytopes

and back [?]. Scalability and precision can be tuned by choosing the number of constraints, but the approach

generally scales less well than using just zonotopes.
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convolution is the Minkowski sum of independent input sets. We were somewhat surprised,

however, that an ε-close zonotope approximation of the input convolution can be computed

for the same cost as a bounding box approximation using the support function algorithm

(Observations 1 and 2). We therefore propose to use a zonotope to approximate the input

convolution, and the support function algorithm to compute the autonomous evolution. Both

can be combined within the support function framework. The result is therefore an enhanced

variation of the support function algorithm, which uses zonotopes as an auxiliary data structure.

Reducing the number of generators of the zonotope to cn, where n is the dimension of the

state space, allows us to evaluate, at equal cost, N/(c+ 1) times the directions of the direct

support function algorithm, with N being the number of time steps (Observation 3). While

zonotopes may not help to accelerate the support function algorithm, they can substantially

increase its precision by allowing one to evaluate more directions.

An even more distinct advantage was found for switching dynamics, where the switches

take place at fixed points in time. Here, a direct computation with support functions does not

scale even for low-dimensional systems and modest numbers of switches (Observation 4). Using

separate zonotopes for the input convolution within switching times allows us to accelerate

the computation by a factor of N/(c+ 1). It remains, however, limited to moderate number of

switches (Observation 5). Finally, using a single zonotope to compute the input convolution

and reducing its number of generators to dn accelerates the computation by a factor of

iN/(d+1), where i is the number of switches (Observation 6). The resulting cost of evaluating

the support function over i switches, with N time steps per switch, is O
(
idNn2

)
. This cost is

a factor d higher than the support function algorithm without switching, but it scales linearly

with the number of switches and time steps. The downside of using a reduced zonotope for

switched dynamics is a potential error accumulation known as the wrapping effect. Note,

however, that all other published algorithms for high-dimensional switched dynamics suffer

from the same effect. A more detailed study of the generator reduction for this particular

application may help to alleviate this problem.

Outlook The algorithm proposed in this paper is highly relevant to the analysis of systems

with nonlinear dynamics. By linearizing the system at time-triggered intervals, our algorithm

can immediately be applied. Note that the switching times need not be fixed in advance, and

can themselves be triggered using state-based conditions as shown in Sect. 5.3. This paper

thus lays the groundwork for bringing the power of support function algorithms to bear on

systems with nonlinear dynamics.
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