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𝐶𝑎𝑐𝑡𝑖𝑜𝑛
𝑖,𝑂𝑆,𝑎  denotes the expected direct cost of taking a specific action a on the hosts starting in state i for a 

specific OS type in the current period, which is assumed to be period independent. 
𝐶𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
𝑖,𝑂𝑆 denotes the potential cost arising from compromised risk in the hosts being in state i for a specific 

OS type.  
γ  is the discount (monthly) factor. Typically, we use 0.99 so that the annual discounting is approximately 

10%. 
𝑃𝑖,𝑗𝑎  refers to the transition probability of a transition from state i to state k under action a.  
𝑄𝑖,𝑂𝑆  refers to the probability of an incident for a host in state i and operating system (OS).  
𝐶𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛
𝑂𝑆,𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  is the average cost for incidents on each OS depending on data sensitivity. 

The usual value iteration recursion in Markov Decision Processes (MDP) to generate the optimal policy 
is: 
min
𝑎
𝐶𝑡𝑜𝑡𝑎𝑙
𝑖,𝑂𝑆,𝑎,𝑡 = 𝐶𝑎𝑐𝑡𝑖𝑜𝑛

𝑖,𝑂𝑆,𝑎 + 𝐶𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
𝑖,𝑂𝑆 + 𝛾∑ 𝑃𝑖,𝑗𝑎 𝐶𝑡𝑜𝑡𝑎𝑙

𝑗 ,𝑂𝑆,𝑎,𝑡+1𝑠
𝑗=1 .    

Table 1. NSF 1409214 Data-Driven Cyber Vulnerability Maintenance results. 

Challenge Solution 
Base Policy Model – Can we create and implement 
policies that approximately integrate available 
scan, incident, and action data? 

Use MDP with manual adjustments of transition 
probabilities, incident probabilities, and average 
counts (see Jiang, Liu, and Allen, under 
preparation, and “band aid model” below). 

Monitoring Model - How can we monitor to see if 
there are assignable causes? 

Overcome autocorrelation from carried over 
vulnerabilities, using AR(1) demerit models and 
effectively chart residuals with simulation-based 
limits (see below, Afful-Dadzie and Allen, 2016). 

Social Media Model – How can we use the power 
of social media to shed light on vulnerability 
management? 

Focus Tweet streams using Subject Matter Expert 
Refined Topic (SMERT) models and make manual 
counts which become observations (Sui, Milam, 
Allen, 2015 and Allen, Sui, Parker, under review). 

Preliminary Software – Can we create a GUI so 
users can benefit from the base policy model? 

Use Visual studio and have file reading and 
identifications in stage 1 and the knowledge-
intensive work is in state 2 (see Figure 1). 

Model with Optimal Experimentation – Old 
observations are biased (see below) but how can 
we plan for and use the new? 

Enhance and apply Bayesian Adaptive MDP 
(BAMDP, Duff 2002) to have observations be 
simplex points and compound actions to learn 
many-at-a-time (see Hou, 2015, Allen, 
Roychowdhury, Hou, under revision). 

Model with Enhanced Accuracy from Hosts – Can 
we use states that are simple and Markovian? 

Tree models permit the identification of host 
features that most accurately predict evolution 
while permitting implementation (Yang, Allen, 
Agrawal, 2016) 

Model with Enhanced Vulnerability Accuracy and 
Scan Timing – How can we better model scan, 
incident, and action data? 

Model birth and death of vulnerabilities (state 1). 
In stage 1, model these. In stage 2, use these 
models to formulate and solve for host policies 
(draft early 2017). 

Model with Additional Attack Vectors – How can 
we use near real-time net log data? 

Using access both to OSU and ARCYBER net 
logs, apply discriminant functions and simulation 
to predict multiple types and costs (draft early 
2017). 

Real World Applications – Can we demonstrate 
value in real organization of the associated 
methods and software? 

We have on-going projects with the Ohio State 
University College of Engineering and Cardinal 
Health. We have many other customers in mind 
including Nationwide Insurance and Worthington 
Cylinders. 

 

Table 2. All Windows transition counts (a) actual and (b) counting partial actions as if full actions. 
  (a)       (b)   
1: Do Nothing Low Med. 

Low 
Med. 
High High Critica

l  
Low Med. 

Low 
Med. 
High High Critical 

Low 2,015 52 136 6 0  2,015 52 136 6 0 
Med. Low 23 2,379 103 29 31  23 2,379 103 29 31 
Med. High 172 77 211,904 1,365 1,910  172 77 211,904 1,365 1,910 
High 0 0 0 0 0  0 172 77  211,904 1,365 
Critical 0 0 0 0 0  0 0 172 77 211,904 
2: Research 
Accept 

     
 

     

Low 0 0 0 0 0  851 115 0 0 0 
Med. Low 0 0 0 0 0  714 851 115 0 0 
Med. High 0 0 0 0 0  14 714 851 115 0 
High 2 14 714 851 115  2 14 714 851 115 
Critical 5 5 1,163 129 1,347  5 5 1,163 129 1,347 
3: Res. Reject            
Low 0 0 0 0 0  9 0 0 0 0 
Med. Low 0 0 0 0 0  6 0 0 0 0 
Med. High 0 0 0 0 0  1 384 0 0 0 
High 2 14 1,680 0 0  2 14 1,680 0 0 
Critical 5 5 1,163 1,476 0  5 5 1,163 1,476 0 
4: Compens. 
Controls 

     
 

     

Low 100 100 0 0 0  100 100 0 0 0 
Med. Low 100 100 0 0 0  100 100 0 0 0 
Med. High 100 100 0 0 0  100 100 0 0 0 
High 100 100 0 0 0  100 100 0 0 0 
Critical 100 100 0 0 0  100 100 0 0 0 
 

Table 3. (a) Incident counts by month, (b) compromised host counts by operating system and associated 
probability estimates, and (c) regression estimates for incident rates. 

 (a)     (b)   
Index Period Incident Rate  Rate (Original) Windows Linux Enterprise Other Linux Other OS 

1 1/2014 0.07%  Low 0.49% 2.21% 0.38% 0.05% 
2 2/2014 0.07%  Medium Low 0.30% 0.99% 0.74% 0.56% 
3 4/2014 0.42%  Medium High 0.03% 1.05% 0.05% 0.05% 
4 5/2014 0.04%  High 0.37% 4.90% 0.76% 0.72% 
5 6/2014 0.02%  Critical 0.54% 0.00% 0.27% 2.17% 
6 7/2014 0.07%       
7 8/2014 0.06%    (c)   
8 9/2014 0.02%  Rate (Managed) Windows Linux Enterprise Other Linux Other OS 
9 10/2014 0.06%  Low 0.007% N/A 0.002% 0.004% 
10 11/2014 0.03%  Medium Low 0.008% N/A 0.003% 0.008% 
11 12/2014 0.03%  Medium High 0.010% N/A 0.004% 0.012% 
12 1/2015 0.02%  High 0.011% N/A 0.005% 0.016% 
13 2/2015 0.03%  Critical 0.013% N/A 0.006% 0.020% 
14 3/2015 0.01%       
15 4/2015 0.00%  Rate (Unmanaged) Windows Linux Enterprise Other Linux Other OS 
16 5/2015 0.01%  Low 0.34% 1.00% 0.425% 0.202% 
17 6/2015 0.02%  Medium Low 0.38% 1.80% 0.550% 0.402% 
18 7/2015 0.00%  Medium High 0.42% 2.60% 0.675% 0.602% 
19 8/2015 0.00%  High 0.46% 3.40% 0.800% 0.802% 
20 9/2015 0.01%  Critical 0.50% 4.20% 0.925% 1.002% 
21 10/2015 0.15%       

 

Table 4. The base model optimal policy which differs from standard practice (do nothing for low and 
medium network vulnerabilities and research accept for high and critical network vulnerabilities). 

 Windows-
normal 

Windows-
sensitive 

Linux Ent.-
normal 

Linux Ent.-
sensitive 

Other Linux-
normal 

Other Linux-
sensitive 

Other OS-
normal 

Other OS-
sensitive 

% of All Hosts 56.68% 2.04% 0.44% 0.05% 10.88% 1.24% 27.71% 0.96% 
% Managed % 80% 100% 0% 0% 80% 100% 80% 100% 

         
Unmanaged Windows-

normal 
Windows-
sensitive 

Linux Ent.-
normal 

Linux Ent.-
sensitive 

Other Linux-
normal 

Other Linux-
sensitive 

Other-
normal 

Other-
sensitive 

Low Do Nothing Do Nothing Do Nothing Do Nothing Do Nothing Do Nothing Do Nothing Do Nothing 
Med. Low Do Nothing Do Nothing Res. Accept Res. Reject Do Nothing Res. Accept Res. Accept Res. Accept 
Med. High Do Nothing Do Nothing Res. Accept Res. Reject Do Nothing Res. Accept Res. Accept Res. Reject 

High Do Nothing Res. Accept Res. Accept Res. Reject Res. Accept Res. Accept Res. Accept Res. Reject 
Critical Do Nothing Res. Accept Res. Accept Res. Reject Res. Reject Res. Reject Res. Accept Res. Reject 

 Managed Windows-
normal 

Windows-
sensitive 

Linux 
Enterprise-

normal 

Linux Ent.-
sensitive 

Other Linux-
normal 

Other Linux-
sensitive 

Other-
normal 

Other-
sensitive 

Low Do Nothing Do Nothing Res. Accept Res. Accept Do Nothing Do Nothing Do Nothing Do Nothing 
Med. Low Do Nothing Res. Accept Res. Reject Res. Reject Do Nothing Do Nothing Res. Accept Res. Accept 
Med. High Do Nothing Res. Accept Res. Reject Res. Reject Do Nothing Do Nothing Res. Accept Res. Reject 

High Do Nothing Res. Accept Res. Reject Res. Reject Do Nothing Res. Accept Res. Accept Res. Reject 
Critical Res. Accept Res. Accept Res. Reject Res. Reject Do Nothing Res. Reject Res. Accept Res. Reject 

 

 

Figure 1. Software related to the base models from NSF project #1409214. 

 
Figure 7. RMS comparison for different estimation methods for Latent Dirichlet Allocation. 
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Table 5. Proposed TTP work and addressed challenges. 

Challenge Planned Work 
Reporting – Can we make useful reports for 
administrators, managers, and CISOs? 

We perform interviews and ethnographic 
observations to see what decision aids they are 
using day-to-day and month-to-month. Then, we 
can enhance these with software and models. 

Enhanced Interaction – Can we use developed 
models to support user decision-making 
accounting for local and non-local costs and 
multiple attack models?  

Using the enhanced incident data both with simple 
sums and multicriteria approaches, we illuminate 
costs born locally from other types of losses and 
how weightings can support different vulnerability 
management policies. 

Enhanced Experiences – Can we create workflows 
with improved usability for sustainability at more 
organizations? 

We create a set of workflows that goes beyond the 
base model, has visualizations including control 
charts, Twitter Pareto charts, attack model Pareto 
charts, and time forecasted costs scenarios. 

General Applications – Can we improve 
experiences at many major organizations? 

We import and elicit data, generate policies, and 
assist in their implementation. We measure the 
costs before and after implementation in net 
present values. 

Elections Applications – Can we improve the 
policies relating to cyber security in an elections 
system? 

We import and elicit data, generate policies, and 
assist in their implementation. We measure the 
costs before and after implementation in net 
present values. Also, we assist officials to share 
general best practices in machine allocation, 
phishing response, and chain of custody. 

Machine Learning and Cyber Security Course – 
Create and enhance a graduate elective on machine 
learning and cyber security. 

We expect to already have proposed a course. If it 
is approved, we will develop the detailed materials, 
teach, and assess the course. This will both 
increase the awareness of cyber issues and MDP 
and other machine learning technologies.  

 
 

 
Figure 4. Benefits of experiments with optimal learning. 
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Figure 5. Vision for proposed work. 

  
   (a)                                                                             (b) 

Figure 6. (a) Forecast incidents using retweet counts and (b) forecast total vulnerability demerits. 

𝑌𝑡|𝑌𝑡−1, 𝑎𝑡−1, 𝒑(𝑘)
𝑎𝑡−1 , (𝑘)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 4𝑅𝑜𝑤𝑌𝑡−1(𝒑(𝑘)

𝑎𝑡−1)7      

where 
max

𝐱1,…,𝐱𝐻−1
∑ 𝑃(𝑘)𝐸𝑌1,…,𝑌𝐻
𝑞
𝑘=1 [∑ 𝛾𝑡−1𝐻−1

𝑡=1 𝑟𝑌𝑡
𝑎𝑡 |𝐱𝑡 + 𝛾𝐻𝑟𝑌𝐻

𝑎0|𝐱𝑡 ].	 	  
Theorem 1. Consider a BAMDP formulation and a specifically chosen POMDP formulation (details 
omitted here for conciseness) for any discount factor γ satisfying 0 ≤ γ ≤ 1 and any proper observation 
matrix, oa for all a = 1,...,u. The BAMMDP formulation and the related POMDP formulations are 
equivalent such that any feasible solution to one problem is a feasible solution to the other problem. Both 
solutions have the same objective values and the optimal solution to one problem is the optimal solution 
to the other problem. 𝑝𝑖(𝑦, 𝑎𝑖|𝑂) =

𝑝0(𝑦,𝑎𝑖)𝑝(𝑂|𝑦,𝑎𝑖)
∑ 𝑝0(𝑦,𝑎𝑖)𝑝(𝑂|𝑦,𝑎𝑖)𝑛
𝑦=1

  

Bayesian	Adap/ve	MDP	Formula/on	


