
NSF Secure and Trustworthy Cyberspace Inaugural Principal Investigator Meeting
Nov. 27 -29th 2012

National Harbor, MD

Interested in meeting the PIs? Attach post-it note below!

Data Confidentiality & Integrity
PIs: Mathias Payer (Purdue University)

https://hexhive.github.io/projects/



Challenge:
• Applications written in C/C++ are prone

to memory corruption
• Existing solutions are incomplete or

have high overhead

Scientific Impact:
• Selective security policies
• Tunable security vs. overhead trade-off

Broader Impact:
• Protects critical data
• Easy to use: compiled code is protected
• Taught in new software security course

PUBLICATIONS
1. Control-Flow Integrity 3P: Protection, Precision, and Performance. Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, and Mathias

Payer. In CSUR'17: ACM Computing Surveys, 2017 (to appear).
2. Automatic Contract Insertion with CCBot Scott A. Carr, Francesco Logozzo, and Mathias Payer. In TSE'16: IEEE Transactions on Software Engineering, 2016
3. Enforcing Least Privilege Memory Views for Multithreaded Applications. Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer. In CCS'16: ACM

Conf on Computer and Communication Security, 2016
4. TypeSanitizer: Practical Type Confusion Detection Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Herbert Bos, Cristiano Giuffrida, and Erik van der Kouwe. In

CCS'16: ACM Conf on Computer and Communication Security, 2016
5. VTrust: Regaining Trust on Your Virtual Calls Chao Zhang, Scott A. Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias Payer, and Dawn Song. In NDSS'16: Network and

Distributed System Security Symposium, 2016
6. TypeSanitizer: Practical Type Confusion Detection. Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Herbert Bos, Cristiano Giuffrida, and Erik van der Kouwe.

In CCS'16: ACM Conf on Computer and Communication Security, 2016
7. Fine-Grained Control-Flow Integrity for Kernel Software Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. In EuroS&P'16: IEEE European Symposium on

Security and Privacy, 2016

Protected
DataUnprotected

Memory Meta
Data

SFI

void vulnerable() {
key *secret;
int cmd[5];
secret = load_key();
input(cmd); // vulnerability

}
sensitive key *secret;

SafeStack:
• Unsafe data on separate stack
• Prevents corruption of return addresses
• Compiler-based transformation
• Relies on detailed type information

Kernel CFI [7]:
Enforce data-flow restrictions for code
pointers to increase CFG precision:
• Code pointers can only be assigned or

dereferenced.
• Prohibit data flow from data pointers to

code pointers.

VTrust [5]:
• Verify virtual function based on type
• Sanitize vtable pointers to ensure

pointee is valid

TypeSanitizer [6]:
• Verify C++ casts dynamically
• Downcasts (from base class to subclass) are unsafe
• Low overhead (SPEC: 4.6%, Firefox: 14.3%)

SafeStack UnsafeStack

return address

int 42

int[3] {1, 2, 3}double 3.14

Solution:
• Key finding: only some data is sensitive
• Provide integrity and confidentiality for

sensitive data, coarse protection for all
• Assumes CFI in place

Upstreamed into LLVM,
Default in HardenedBSD

void draw(Shape* s) {
Square* sq =
static_cast<Square*>(s);

s->foo();
}

