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Challenge: 
• Applications written in C/C++ are prone 

to memory corruption
• Existing solutions are incomplete or 

have high overhead

Scientific Impact:
• Selective security policies
• Tunable security vs. overhead trade-off

Broader Impact:
• Protects critical data
• Easy to use: compiled code is protected
• Taught in new software security course
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void vulnerable() {
key *secret;
int cmd[5];
secret = load_key();
input(cmd); // vulnerability

}
sensitive key *secret;

SafeStack:
• Unsafe data on separate stack
• Prevents corruption of return addresses
• Compiler-based transformation
• Relies on detailed type information

Kernel CFI [7]:
Enforce data-flow restrictions for code 
pointers to increase CFG precision:
• Code pointers can only be assigned or 

dereferenced.
• Prohibit data flow from data pointers to 

code pointers.

VTrust [5]:
• Verify virtual function based on type
• Sanitize vtable pointers to ensure 

pointee is valid

TypeSanitizer [6]:
• Verify C++ casts dynamically
• Downcasts (from base class to subclass) are unsafe
• Low overhead (SPEC: 4.6%, Firefox: 14.3%)

SafeStack UnsafeStack

return address

int 42

int[3] {1, 2, 3}double 3.14

Solution: 
• Key finding: only some data is sensitive
• Provide integrity and confidentiality for 

sensitive data, coarse protection for all
• Assumes CFI in place

Upstreamed into LLVM,
Default in HardenedBSD

void draw(Shape* s) {
Square* sq =  
static_cast<Square*>(s);

s->foo();
}


