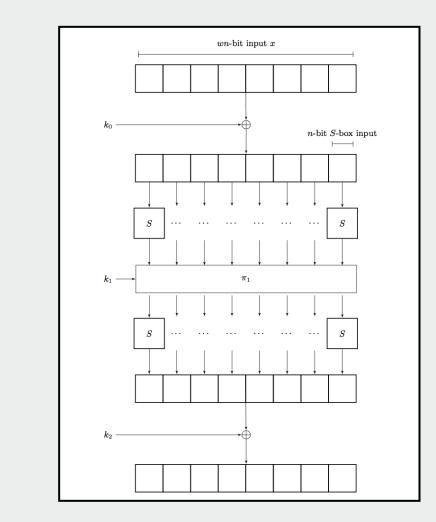
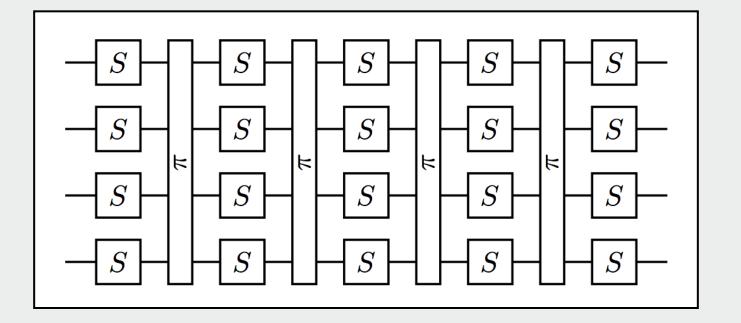
Designing Secure Hash Functions and Block Ciphers

Yevgeniy Dodis, NYU http://www.cs.nyu.edu/~dodis/


Hash functions and block ciphers are used in almost any cryptographic application. Yet, many such practical applications often do not have sufficient theoretical foundations for several related reasons: an application uses a given primitive in an **unforeseen manner**; an application makes **incorrect assumptions** about a primitive; a primitive has **unexpected weaknesses**; a primitive contains a **backdoor**. Hence, there is renewed interest and urgency to study the basic design principles of hash functions, as well as how such hash functions should be appropriately used in applications.


Indifferentiability

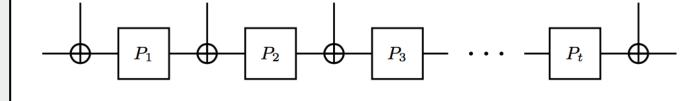
Standard security notion for hash functions and block ciphers
Allows designing cryptographic primitives from simple ideal components
Guarantees security even if attacker has access to underlying components

Substitution-Permutation Networks

Substitution-permutation networks (SPNs) are used in many modern block ciphers
So far almost no provable security
Result: 3-round linear SPN network is random permutation and optimal

Confusion-Diffusion Networks

- •Used extensively in design of hash functions and block ciphers
- •**Result:** constant number of rounds sufficient for domain extension of public random function


Key-Alternating Ciphers

•Abstraction of AES and generalization of Even-

k_0	k_1	k_2	k_t

Mansour cipher

•Result: 5-round key-alternating cipher is indifferentiable from ideal cipher

Backdoored PRGs

•NIST's Dual EC PRG backdoored •Results: show both how to build backdoored PRGs and how to immunize PRGs against backdoors

H² and HMAC

•Results: hashing twice (H²) insecure; prove security of deployed HMAC applications in indifferentiability framework

Interested in meeting the PIs? Attach post-it note below!

National Science Foundation WHERE DISCOVERIES BEGIN

The 3rd NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting January 9-11, 2017

Arlington, Virginia

