Development and Evaluation of Next Generation Homomorphic Encryption Schemes

Hoffstein J., Silverman J.

Brown University

Sunar B. Worcester Polytechnic Institute

Fully Homomorphic Encryption (FHE)

Store $e(x_1)$, $e(x_2)$ Concat x_1, x_2 Retrieve x_3 $e(x_1||x_2)$ Data. $e(x_1)$, $e(x_2)$ $x_3=e(x_1||x_2)$

• Allows computation over encrypted data without the secret key.

Data:

- Distributed applications where sensitive data is protected: Semi-trusted cloud servers.
- Any function can be evaluated using homomorphic primitives.

Objective

Investigate and develop next generation HE schemes with no heavy computation or evaluation keys.

- First Generation(previous schemes):
 - Large evaluation keys (in Gigabytes)
 - Costly multiplicative operations
 - Fast noise growth with multiplications
- Second Generation (GSW[1], FHEW[2], F-NTRU[3]):
 - No evaluation keys, no relinearization
 - Large parameter sizes for security
- Next Generation (FF-Encrypt):
 - No evaluation keys, fast evaluations
 - Affordable parameter sizes

FF-Encrypt

Proposed by the PIs; based on the difficulty of recovering an unknown isomorphism between finite fields; multiplicative evaluations without costly operations; adequate security with much smaller parameter sizes.

Three Modules of The Project

• Theoretical foundation of FF-Encrypt:

security analysis, selection of parameters, noise mitigation techniques;

- Comparison with existing schemes, scalability of the scheme, optimized software libraries;
- A test drive of the schemes, applications in semi-trusted cloud servers.

FF-Encrypt Scheme

- Create irreducible polynomials $f(x) \in \mathbb{F}_q[x]$ and $\mathbf{h}(y) \in \mathbb{F}_q[y]$
- Fix isomorphism
 - $\phi(\psi(x)) \equiv x \mod f(x)$ $\psi(\phi(y)) \equiv y \mod h(x)$
- Isomorphism

- Encryption
 - fix $p(x) \in \mathbb{F}_q[x]$ with small coefficients
 - randomly sample: $r(x) \in \mathbb{F}_q[x]$ with small coefficients
 - compute p(x) = n(x)r(x) + n
 - $e(x) = p(x)r(x) + m(x) \pmod{f(x)}$ $c(y) = e(\phi(y)) \pmod{h(y)} \in \mathbb{F}_q[y]/(h(y))$
- Decryption
 - compute

$$\frac{\mathbb{F}_q[x]}{(f(x))} \to \frac{\mathbb{F}_q[y]}{(h(y))}$$
$$m(x) \mod f(x) \mapsto m(\phi(y)) \mod h(y)$$

• Inverse-Isomorphism

 $\frac{\mathbb{F}_q[y]}{(\boldsymbol{h}(y))} \to \frac{\mathbb{F}_q[x]}{(\boldsymbol{f}(x))}$ $\boldsymbol{c}(y) \mod \boldsymbol{h}(y) \mapsto \boldsymbol{c}(\psi(y)) \mod \boldsymbol{f}(x)$

- Underlying hard problem: secret isomorphism between finite fields
- Lattice attacks alone appear to be insufficient to locate a secret field isomorphism and break scheme

 $a(x) \equiv c(\psi(x)) \pmod{f(x)}$ $\equiv p(x)r(\phi(\psi(x))) + m(\phi(\psi(x))) \pmod{f(x)}$ $\equiv p(x)r(x) + m(x) \pmod{f(x)}$

- Noise Mitigation Techniques
 - modulus switching [4]
 - ciphertext Flattening [1]
- Move FF-Encrypt from a leveled to a bootstrapped FHE

Bibliography

- 1. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: CRYPTO. pp. 75–92. Springer (2013).
- Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less than a second. In: Advances in Cryptology–EUROCRYPT 2015, pp. 617–640. Springer (2015).
- 3. Doroz, Y., Sunar, B.: Flattening NTRU for evaluation key free homomorphic encryption. Cryptology ePrint Archive. Report 2016/315. http://eprint.iacr.org/2016/315 (2016).
- 4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) FOCS. pp. 97–106. IEEE (2011).

Interested in meeting the PIs? Attach post-it note below!

National Science Foundation WHERE DISCOVERIES BEGIN

The 3rd NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting

January 9-11, 2017 Arlington, Virginia

