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The trillion sensor challenge

5 Billion people to be connected by 2015
(Source: NSN)

 / trillion wireless devices serving 7 billion
people in 2017 (Source: WWRF)

— 1000 wireless devices per person?

[Courtesy: Niko Kiukkonen, Nokia]




TerraSwarms: Swarm at the edge of the cloud

The Cloud

Mobile
Access & Relay

Trillions of Distributed Connected Devices
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TerraSwarm Challenges
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WIRELESS IMPLANTABLE MEDICAL DEVICES
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Privacy Concerns - SmartGrid
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Switching to advanced

Can Smart Grid know too much?

Hydro meter info a boon for thieves, marketers, and must be protected, privacy czar says

Utilities work to prevent privacy backlash over smart grid

SHAWN MCCARTHY - GLOBAL ENERGY REPORTER,
OTTAWA — The Globe and Mail

Toronto Star, May 12, 2010
Tanya Talaga
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The Smart Grid and Privacy
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Latest News

« California Protects the Privacy of Smart Meter Data: The California Public Utility Commission has
established new rules to protect information about consumer use of "smart meter" electrical services. The
California decision, the first in the country, establishes fair information practice requirements, including a
consumer right of access and control, data minimization obligations, use and disclosure limitations, and data

quality and integrity requirements. Electric utilities and their contractors, as well as third party who receive
electricity usage data from utilities are subject to the new rules. EPIC submitted extensive comments to the
Public Utility Commission regarding privacy safeguards for consumer energy usage data. For more, see EPIC
Smart Grid Privacy. (Aug. 6, 2011)

e C G R d Privacy Safeg

on "Smart Meter" Services: The Trans-Atlantic

p
Consumer Dialogue (TACD), a coalition of consumer groups in Europe and North America, adopted a report on

privacy and electrical services at the 12th Annual TACD meeting held recently in Brussels. The Smart Meter

he time you jump into the

shower in the morning,
the time you fmnally flick off that
TV at night — even the time you
set your home security alarm.

Ontario’s privacy czar wants

to keep the information
secret. Personal privacy must
remain paramount as the “smart
grid” electricity system is built
around the province, said Ann
Cavoukian, Ontario’s information
and privacy commissioner.

As the grid collects information
on power usage and smart
meters are installed in Ontario
homes to track consumption
data, that personal information
could represent a treasure
trove for hackers, thieves or




Privacy Concerns — Mobile Millenium
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Privacy challenges

* What is privacy, formally?

* Is there a tradeoff between privacy and utility?

* Privacy-aware estimation and control

e Systems and control tools for privacy




Privacy is not anonymity

vereLy IM“I]

* Privacy breaches generally due to existence of side information

— Mass. GIC medical db w/ voter registration db (Sweeney, 1997)
— Netftflix prize w/ IMDB (Narayana & Shmatikov, 2008)

— Individual online transactions w/ changes in public
recommendation systems (Calandrino et al., 2011)

— Anonymity in location based services

e Can’t know what the adversary knows, or might know in the future.
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Differential Privacy

Cynthia Dwork

Microsoft Research
dwork@microsoft.com

Abstract. In 1977 Dalenius articulated a desideratum for statistical
databases: nothing about an individual should be learnable from the
database that cannot be learned without access to the database. We give
a general impossibility result showing that a formalization of Dalenius’
goal along the lines of semantic security cannot be achieved. Contrary to
intuition, a variant of the result threatens the privacy even of someone
not in the database. This state of affairs suggests a new measure, dif-
ferential privacy, which, intuitively, captures the increased risk to one’s
privacy incurred by participating in a database. The techniques devel-
oped in a sequence of papers [8, 13, 3], culminating in those described

Cynthia Dwork. "Differential privacy.” iy oo, sl waee Inormaton st the dtabs oo b
provided while simultaneously ensuring very high levels of privacy.

Automata, languages and programming. | ...

S p ri n ge r Be rI i n H e i d e I be rg, 2006 . 1_ 1 2 . A statistic is a quantity computed from a sample. If a database is a repre-

sentative sample of an underlying population, the goal of a privacy-preserving
statistical database is to enable the user to learn properties of the population
as a whole, while protecting the privacy of the individuals in the sample. The
work discussed herein was originally motivated by exactly this problem: how
to reveal useful information about the underlying population, as represented
by the database, while preserving the privacy of individuals. Fortuitously, the
techniques developed in [8, 13, 3] and particularly in [12] are so powerful as to
broaden the scope of private data analysis beyond this orignal “representatitive”
motivation, permitting privacy-preserving analysis of an object that is itself of
intrinsic interest. For instance, the database may describe a concrete intercon-
nection network — not a sample subnetwork — and we wish to reveal certain
properties of the network without releasing information about individual edges
or nodes. We therefore treat the more general problem of privacy-preserving
analysis of data.

A rigorous treatment of privacy requires definitions: What constitutes a fail-
ure to preserve privacy? What is the power of the adversary whose goal it is to
compromise privacy? What auxiliary information is available to the adversary
(newspapers, medical studies, labor statistics) even without access to the data-
base in question? Of course, utility also requires formal treatment, as releasing
no information or only random noise clearly does not compromise privacy; we

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 1-12, 2006.
© Springer-Verlag Berlin Heidelberg 2006




Differential Privacy, informally

* Set-up:

* Key ldea:

Database

analyst
/ user

queries

db mgmt system ~
Sanitized answers

(public)

— A differentially private mechanism randomly perturbs the answers to a
qguery so that the output distribution over answers does not vary much if
any given individual participates or not

— Hard to infer if the data of any individual was used or not to answer the

query




Differential Privacy, informally SO
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Differential Privacy, formally Penn

* Set-up:

Database

D.
db mgmt system ‘sanitize d answers
(public)
* Formally

* Adj(d,d’) a symmetric binary relation on the set D of databases

* Adjacent databases differ by the data of a single individual
e Amechanism M : D x Q — (R, M) is(g,6)-DP if
for all sets VS € M and all databases d, d’ s.t. Adj(d,d’), we have

P(M(d) e S) <eP(M(d)eS)+90




Differential Privacy, formally

P(M(d) € S) < eP(M(d') € S) + &

Constant € is typically small (i.e. ~ 0.1) - multiplicative error
Constant 6 is very small (i.e. ~0.01) - additive error
If 6=0 then we have (g,0)-DP or simply €-DP

Privacy definition depends on adjacency relation




Two Basic Differentially Private Mechanisms

Database of CPS Pl salariesd = [d,...d ]
Adjacency: Adj(d,d’) iff for some i, |d; — d| < p;
d; = d;-,j # 0

— R =max {p;}

Analyst Query: n

The mechanism M(d) = q(d) + Lap(R/¢) is e-DP
The mechanism M(d) = q(d) + N(0O,(k(6,€) R)?) is (g,6)-DP

k(0,€) < 2\/2 In(2/9)/e (Lap(b) pdf: %be_m/b)




Resilience to post-processing

If mechanism M(d) is (€,0)-differentially private and f is an
arbitrary function, then f (M(d)) is also (€,0)-differentially private

* f as the adversaries : Models arbitrary auxiliary or side
information information the adversary may have. Privacy
guarantee holds no matter what adversary does.

* fas our algorithm: If we access the database in a differentially
private way, we don’t have to worry about how our algorithm
post-processes the result.




Differential privacy in computer science @

e Data mining with differential privacy A. Friedman 2010

 Combinatorial optimization with privacy A. Roth et al 2010

* Mechanism design via differential privacy M. Kearns et al 2012

* Privacy aware learning J. Duchi 2013

e Streaming continuous data C. Dwork et al 2010




Differential Private Filtering

Jerome Le Ny and George J. Pappas
Differentially private filtering

IEEE Transactions on Automatic Control
February 2014.
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Differentially Private Filtering

Jerome Le Ny, Member, IEEE, and George J. Pappas, Fellow, IEEE

Abstract—Emerging systems such as smart grids or intelli-
gent transportation systems often require end-user icati

where private ratings and transactions from individuals on

to continuously send information to external data aggregators
performing monitoring or control tasks. This can result in an
undesirable loss of privacy for the users in exchange of the
benefits provided by the application. Motivated by this trend, this
paper introduces privacy concerns in a system theoretic context,
and addresses the problem of releasing filtered signals that
respect the privacy of the user data streams. Our approach relies
on a formal notion of privacy from the database literature, called

commercial websites are successfully inferred with the help of
information from public recommendation systems. Emerging
traffic monitoring systems using position measurements from
smartphones [4] is another application area where individual
position traces can be re-identified by correlating them with
public information such as a person’s location of residence or
work [4], [5]. Hence, the development of rigorous privacy
preserving isms is crucial to address the justified

differential privacy, which provides strong privacy
against adversaries with arbitrary side information. Methods
are developed to approximate a given filter by a differentially
private version, so that the distortion introduced by the privacy
mechanism is minimized. Two specific scenarios are considered.
First, the notion of dif ial privacy is d i
systems with many participants contributing independent input
signals. Kalman filtering is also discussed in this context, when a
released output signal must preserve differential privacy for the
measured signals or state trajectories of the individual partici-
pants. Second, differentially private mechanisms are described to
approximate stable filters when participants contribute to a single
event stream, extending previous work on differential privacy
under continual observation.

Index Terms—Privacy, Filtering, Kalman Filtering, Estimation

1. INTRODUCTION

RAPIDLY growing number of applications requires

users to release private data streams to third-party appli-
cations for signal processing and decision-making purposes.
Examples include smart grids, population health monitoring,
online recommendation systems, traffic monitoring, fuel con-
sumption optimization, and cloud computing for industrial
control systems. For privacy, confidentiality or security rea-
sons, the participants benefiting from the services provided by
these systems generally do not want to release more infor-
mation than strictly necessary. In a smart grid for example,
a customer could receive better rates in exchange of continu-
ously sending to the utility company her instantaneous power
consumption, thereby helping to improve the demand forecast
mechanism. In doing so however, she is also informing the
utility or a potential eavesdropper about the type of appliances
she owns as well as her daily activities [1]. Similarly, individ-
ual private signals can be recovered from published outputs
aggregated from many users, and anonymizing a dataset is
not enough to guarantee privacy, due to the existence of public
side information. This is demonstrated in [2], [3] for example,

J. Le Ny is with the of Electrical Ecole Poly-

concerns of potential users and thus encourage an increasing
level of participation, which can in turn greatly improve the
efficiency of these large-scale systems.

Precisely defining what constitutes a breach of privacy is
a delicate task. A particularly successful recent definition of
privacy used in the database literature is that of differential
privacy [6], which is motivated by the fact that any useful
information provided by a dataset about a group of peo-
ple can compromise the privacy of specific individuals due
to the existence of side information. Differentially private
mechanisms randomize their responses to dataset analysis
requests and guarantee that whether or not an individual
chooses to contribute her data only marginally changes the
distribution over the published outputs. As a result, even an
adversary cross-correlating these outputs with other sources of
information cannot infer much more about specific individuals
after publication than before [7].

Most work related to privacy is concerned with the analysis
of static databases [6], [8]-[10], whereas cyber-physical sys-
tems clearly emphasize the need for mechanisms working with
dynamic, time-varying data streams. Recently, the problem of
releasing differentially private statistics when the input data
takes the form of a binary stream describing event occurrences
aggregated from many participants has been considered in
[11]-[13]. This work forms the basis for the scenario studied in
Section VI, and is discussed in more details in Section VI-B.
However, most of this paper is devoted to a different situation
where participants individually provide real-valued signals. A
differentially private version of the iterative averaging algo-
rithm for consensus is considered in [14]. In this case, the input
data to protect consists of the initial values of the participants
and is thus a single vector, but the update mechanism subject to
privacy attacks is dynamic. Information-theoretic approaches
have also been proposed to guarantee some level of privacy
when releasing time series [15], [16]. However, the resulting
privacy guarantees only hold if the statistics of the participants’
data streams obey the assumptions made (typically stationarity,

technique de Montreal, QC H3T 1J4, Canada. G. Pappas is with the De-
partment of Electrical and Systems Engincering, University of Pennsylva-
nia, Philadelphia, PA 19104, USA. jerome.le-ny@polymtl.ca,
pappasg@seas.upenn.edu.

Preliminary versions of this paper appeared at Allerton 2012 and CDC
2012.

d d and distributional assumptions), and require the
explicit statistical modeling of all available side information.
This task is very difficult in general as new, as-yet-unknown
side information can become available after releasing the
results. In contrast, differential privacy is a worst-case notion




Private Filtering : Event Streams Counters

* Processing binary input signal (0-1 events) — DP linear filter approximation

— Event-level privacy: each user contributes a unique event: two inputs differing by a single
event must be hard to distinguish

— Ex: Counter [Dwork et al., 2010], [Chan et al., 2011] (unstable stable filter)
— Ex: Certain stable filters with slowly decreasing impulse response [Bolot et al., 2011]

— Complicated algorithms (non-recursive, not finite memory), hard to generalize, poor
performance of the approach for the approximation of stable filters

nnnnnnnnnnn
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Differentially Private Filtering P enn

e Adjacency relation

Adi®(u,u’) iff for some i, ||u; — u!|l2 < B,and u; = u; for all j # i.




Differentially Private Filtering

* Approximate filtery = Z?zl GG;u; by a differentially private version

— Adjacency relation
Adj®(u, ') iff for some i, ||u; — ul||s < B,and u; = w; for all j # 4.

Theorem : For (g,0)-differential privacy, can add white Gaussian noise
proportional to the maximum incremental gain with respect to the input channels

— Incremental gain: ||(Gu)o.r — (GU)o.7||2 < Y||wo.r — up.p||2, Yu,w' , VT

— Generalizes mechanism of [Dwork et al., 2006] to dynamic setting with
continuous streams of real-time data

— System and control theoretic tools can be used to design differentially
private mechanisms for continuous data streams




Differentially Private Filtering

Approximate filter y = 2?21 G;u; by a differentially private version

w1 G \ Adj® (u, u") iff for some i, ||u; — u!||,, < b;,
w
and u; = u’. for all j # i.
o G 7(")_' y J j j#
? Gq B > maﬂxlfign{'}/ri,l(gi)bi}:

Theorem: The mechanism M(u)=G(u)+w where w is white noise with
w, ~ (Lap(B/e))™

is e-differentially private.




Differentially Private Filtering

Approximate filter y = 2?21 G;u; by a differentially private version

T G4 \ Adjb(u, u') iff for some 1, ||u; — ut|,., < b;,
w
— ,- . .
. :, y and u; = u; for all j # 1.
= G / 0 > K(d,€) maxi<i<n{¥r;,2(G:) bi }-

Theorem: The mechanism M(u)=G(u)+w where w is white noise with
w, ~ N(0, 0?1 )

is (¢,6)-differentially private.




Differential Privacy Architectures @

* Two basic architectures for (g,6)-differential privacy

Wy

w
Yy
y y

Uz
Wy
w ~ N(0,07) w ~ N(0,07)
o =rk(e,0)B o = k(e,0)B max {||G;l|o0}
n 1S’L§’I’L
MSE =0 [|Gill3 MSE = o2
i=1
Input Output
perturbation perturbation
mechanism mechanism




Event Streams Counters ‘ P CI
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— output perturbation better than input perturbation iff n > [




Event Streams Counters P CIn
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A Traffic Monitoring Example

* Traffic velocity estimation using individual location traces
from smartphones (ex: Mobile Millenium, Bayen et al.)

1 T, T2/2 0
Tit+l = | q Tit T 041 T. 0 W; ¢,

yir =1 0]azip+0oi2 [0 1wy,

n
_ 1
Estimate — Z Xio2t
"




Differentially Private Kalman Filtering Penn

* For Kalman Filtering, we have additional public information about the dynamics
generating the user signals

X; = A;x; B;w; y
i,t+1 it + b; i,t x| 1 0:5
Vit = Cixip + Dijw; 4 0
o
0
o z
=T s 2= g Lix; 4
. tr _
. z)r ’L—]_
) =
Y 2
X, ———» S

n T—1
. . .o 1 .
* Estimation objective: z; = ;Lixi,t min qll_{féo T z_; E [”Zt - zt”ﬂ

e Adjacency relation:
Adj?(z,2") iff for some i, ||z; — x}]|2 < pi,and x5 = 2 for all j # .

— Cannot distinguish between two sufficiently close state trajectories of a user




Differentially Private Kalman Filtering e -

Ti 41 = Aixir + Biw; ¢ Y1

X —— UD:
Vit = Cizis + Diw; 4 % "
X 2 | % Z
2 ™ g Z “t = Lixiy
= 1=1
Z
3
v, | B
X, ———» S

Adj%(z,z") iff for some i, ||S;z; — Sizi|l2 < pi,
(I — S;)x; = (I — S;)r;,and x; = z; for all j # i.

Theorem 5. Ler ¢,0 > (0. A mechanism releasing
(> LiK;y;) + vk(d,€) v, where v is a standard white
Gaussian noise independent of {w;}1<i<n,{Tio0}1<i<n, and
v = maxi<i<n{¥ipi}, with v; the Ho norm of L;K;C;S;, is
(€, 0)-differentially private for the adjacency relation (11).




Kalman Filtering - Differentially Private Mechanisms Penn

* Can add the previous input and output perturbation schemes
to the standard Kalman filter

Input pert.
it+1 it iWit x LW g, Output pert.
Vit = Cixiy + Dijw; 4
x2 Y2 > G2
F
N Yn o G

* For the input perturbation scheme, can take into account the
additional privacy-preserving noise in the redesign of the KF




T t41 = Aixi ¢ + Biw; 4 .

\ 4
_.G)

Output pert.

Vit = Cixi + Dijw; 4

Y2
) Go

\ 4

Z

Yn
X, » G

* For the output perturbation scheme, can redesign the filter to
trade-off the estimation error and the H -, norm of the filter

—Qverall MSE is

(Z ITE (wi — ez')%) + (0, €)* max {p7 | TF(z; — 2)lI5:}

; 1<i<n
1=1

« Multi-objective Hy/ H . optimization problem
— Lyapunov shaping using Linear Matrix Inequalities
— Distinguish between stable and unstable dynamics




A Traffic Monitoring Example

* Traffic velocity estimation using
individual location traces from
smartphones (ex: Mobile
Millenium, Bayen et al.)

1 T, T2/2 0
Tit+l = | 1 | Tit + 01 T. 0 Wj ¢,
yip =1 0@ +0i2 [0 1] w;y

n
, 1
Estimate — Z Tio2t
"=
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Traffic Monitoring — utility/privacy tradeoff Ve
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- Input pert. + compensating KF

v=+=1+Qutput pert. + original KF

3
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convergence time (s)
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* Many cyber-physical applications raise privacy concerns that
need to be addressed to encourage user participation

* Need privacy-preserving mechanisms for various types of
dynamic systems and data

* Characterizing privacy-utility tradeoff requires a quantitative
definition of privacy

» System and control theoretic tools (optimal estimators, system
gains) can be used to design differentially private mechanisms




Next steps

Fundamental limits between privacy and performance

Scaling laws

Apply to Smart Meter models and data

Protect controllers and strategy not data

Privacy pricing
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