
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Jerome	
  Le	
  Ny	
  and	
  George	
  J.	
  Pappas	
  
Joseph	
  Moore	
  Professor	
  

Departments	
  of	
  ESE	
  and	
  CIS	
  
University	
  of	
  Pennsylvania	
  
pappasg@seas.upenn.edu	
  

Differential Privacy in 
 Cyber-Physical Systems 



The trillion sensor challenge 



TerraSwarms: Swarm at the edge of the cloud 
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Privacy Concerns - Cyber-physical applications 
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Privacy Concerns - SmartGrid 
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he time you jump into the 
shower in the morning, 

the time you !nally "ick off that 
TV at night — even the time you 
set your home security alarm.

Ontario’s privacy czar wants 

THEY KNOW WHEN YOU ARE SLEEPING ...

THEY KNOW WHEN YOU ARE AWAKE ... THEY KNOW WHEN YOU 
ARE IN THE SHOWER ...

What time you sleep,cook, shower, turn 
on the tv, or set the alarm system can 
be tracked by the province’s emerging 
smart grid hydro system, possibly tipping 
off thieves to a household’s habits. “This 
thing has to be protected like Fort Knox,” 
says Ontario’s privacy commissioner Ann 
Cavoukian.

Toronto Star, May 12, 2010 
Tanya Talaga

Hydro meter info a boon for thieves, marketers, and must be protected, privacy czar says

to keep the information 
secret. Personal privacy must 
remain paramount as the “smart 
grid” electricity system is built 
around the province, said Ann 
Cavoukian, Ontario’s information 
and privacy commissioner.

As the grid collects information 
on power usage and smart 
meters are installed in Ontario 
homes to track consumption 
data, that personal information 
could represent a treasure 
trove for hackers, thieves or 

T
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Privacy challenges 

	
  

• What	
  is	
  privacy,	
  formally?	
  

•  Is	
  there	
  a	
  tradeoff	
  between	
  privacy	
  and	
  uIlity?	
  

•  Privacy-­‐aware	
  esImaIon	
  and	
  control	
  	
  

•  Systems	
  and	
  control	
  tools	
  for	
  privacy	
  



Privacy is not anonymity 

+ 

	
  

	
  

•  Privacy	
  breaches	
  generally	
  due	
  to	
  existence	
  of	
  side	
  informaIon	
  
– Mass.	
  GIC	
  medical	
  db	
  w/	
  voter	
  registraIon	
  db	
  (Sweeney,	
  1997)	
  
– NeRlix	
  prize	
  w/	
  IMDB	
  (Narayana	
  &	
  ShmaIkov,	
  2008)	
  
–  Individual	
  online	
  transacIons	
  w/	
  changes	
  in	
  public	
  
recommendaIon	
  systems	
  (Calandrino	
  et	
  al.,	
  2011)	
  

– Anonymity	
  in	
  locaIon	
  based	
  services	
  

•  Can’t	
  know	
  what	
  the	
  adversary	
  knows,	
  or	
  might	
  know	
  in	
  the	
  future.	
  



Differential Privacy 

Cynthia	
  Dwork.	
  "DifferenIal	
  privacy.”	
  
Automata,	
  languages	
  and	
  programming.	
  
Springer	
  Berlin	
  Heidelberg,	
  2006.	
  1-­‐12.	
  



Differential Privacy, informally 

•  Set-­‐up:	
  
	
  

	
  

•  Key	
  Idea: 	
  	
  
– A	
  differenIally	
  private	
  mechanism	
  randomly	
  perturbs	
  the	
  answers	
  to	
  a	
  
query	
  so	
  that	
  the	
  output	
  distribuIon	
  over	
  answers	
  does	
  not	
  vary	
  much	
  if	
  
any	
  given	
  individual	
  parIcipates	
  or	
  not	
  

– Hard	
  to	
  infer	
  if	
  the	
  data	
  of	
  any	
  individual	
  was	
  used	
  or	
  not	
  to	
  answer	
  the	
  
query	
  

Database

 resp. 1 resp. n

resp. 2

db mgmt system

analyst 
/ userqueries

sanitized answers
(public)



Differential Privacy, informally 



Differential Privacy, formally 

•  Set-­‐up:	
  
	
  

	
  

•  Formally	
  
•  Adj(d,d’)	
  a	
  symmetric	
  binary	
  relaIon	
  on	
  the	
  set	
  D	
  of	
  databases	
  	
  
•  Adjacent	
  databases	
  differ	
  by	
  the	
  data	
  of	
  a	
  single	
  individual	
  
•  A	
  mechanism	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  (ε,δ)-­‐DP	
  if	
  	
  
for	
  all	
  sets	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  all	
  databases	
  d,	
  d’	
  s.t.	
  Adj(d,d’),	
  we	
  have	
  

Database

 resp. 1 resp. n

resp. 2

db mgmt system

analyst 
/ userqueries

sanitized answers
(public)

M : D � � ⇥ (R,M)

P(M(d) 2 S)  e✏P(M(d0) 2 S) + �



Differential Privacy, formally 

•  Constant	
  ε	
  is	
  typically	
  small	
  (i.e.	
  ~	
  0.1)	
   	
  -­‐	
  mulIplicaIve	
  error	
  

•  Constant	
  δ	
  is	
  very	
  small	
  (i.e.	
  ~0.01)	
   	
  -­‐	
  addiIve	
  error	
  

•  If	
  δ=0	
  then	
  we	
  have	
  (ε,0)-­‐DP	
  or	
  simply	
  ε-­‐DP	
  

•  Privacy	
  definiIon	
  depends	
  on	
  adjacency	
  relaIon	
  

	
  

P(M(d) 2 S)  e✏P(M(d0) 2 S) + �



Two Basic Differentially Private Mechanisms 

•  Database	
  of	
  CPS	
  PI	
  salaries	
  d	
  =	
  [d1,…dn]	
  
•  Adjacency:	
  	
  

–  R	
  =	
  max	
  {ρi}	
  
•  Analyst	
  Query:	
  	
  

•  The	
  mechanism	
  M(d)	
  =	
  q(d)	
  +	
  Lap(R/ε)	
  is	
  ε-­‐DP	
  	
  

•  The	
  mechanism	
  M(d)	
  =	
  q(d)	
  +	
  N(0,(κ(δ,ε)	
  R)2)	
  is	
  (ε,δ)-­‐DP	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

q(d) =
1

n

nX

i=1

di

Adj(d, d0) i↵ for some i, |di � d0i|  ⇢i

dj = d0j , j 6= i

(�, ✏)  2
p

2 ln(2/�)/✏

✓
Lap(b) pdf:

1

2b
e�|x|/b

◆



Resilience to post-processing 

If	
  mechanism	
  M(d)	
  is	
  (ε,δ)-­‐differenIally	
  private	
  and	
  f	
  is	
  an	
  
arbitrary	
  funcIon,	
  then	
  f	
  (M(d))	
  is	
  also	
  (ε,δ)-­‐differenIally	
  private	
  	
  

•  f	
  as	
  the	
  adversaries	
  :	
  Models	
  arbitrary	
  auxiliary	
  or	
  side	
  
informaIon	
  informaIon	
  the	
  adversary	
  may	
  have.	
  Privacy	
  
guarantee	
  holds	
  no	
  mauer	
  what	
  adversary	
  does.	
  	
  

•  f	
  as	
  our	
  algorithm:	
  If	
  we	
  access	
  the	
  database	
  in	
  a	
  differenIally	
  
private	
  way,	
  we	
  don’t	
  have	
  to	
  worry	
  about	
  how	
  our	
  algorithm	
  
post-­‐processes	
  the	
  result.	
  	
  

	
  



Differential privacy in computer science 

•  Data	
  mining	
  with	
  differenIal	
  privacy	
   	
  A.	
  Friedman	
  	
  2010	
  

•  Combinatorial	
  opImizaIon	
  with	
  privacy	
   	
  A.	
  Roth	
  et	
  al	
  2010	
  

•  Mechanism	
  design	
  via	
  differenIal	
  privacy 	
  M.	
  Kearns	
  et	
  al	
  2012	
  

•  Privacy	
  aware	
  learning 	
   	
   	
  J.	
  Duchi	
  2013	
  

•  Streaming	
  conInuous	
  data	
   	
   	
  C.	
  Dwork	
  et	
  al	
  2010	
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Differentially Private Filtering
Jerome Le Ny, Member, IEEE, and George J. Pappas, Fellow, IEEE

Abstract—Emerging systems such as smart grids or intelli-
gent transportation systems often require end-user applications
to continuously send information to external data aggregators
performing monitoring or control tasks. This can result in an
undesirable loss of privacy for the users in exchange of the
benefits provided by the application. Motivated by this trend, this
paper introduces privacy concerns in a system theoretic context,
and addresses the problem of releasing filtered signals that
respect the privacy of the user data streams. Our approach relies
on a formal notion of privacy from the database literature, called
differential privacy, which provides strong privacy guarantees
against adversaries with arbitrary side information. Methods
are developed to approximate a given filter by a differentially
private version, so that the distortion introduced by the privacy
mechanism is minimized. Two specific scenarios are considered.
First, the notion of differential privacy is extended to dynamic
systems with many participants contributing independent input
signals. Kalman filtering is also discussed in this context, when a
released output signal must preserve differential privacy for the
measured signals or state trajectories of the individual partici-
pants. Second, differentially private mechanisms are described to
approximate stable filters when participants contribute to a single
event stream, extending previous work on differential privacy
under continual observation.

Index Terms—Privacy, Filtering, Kalman Filtering, Estimation

I. INTRODUCTION

A RAPIDLY growing number of applications requires
users to release private data streams to third-party appli-

cations for signal processing and decision-making purposes.
Examples include smart grids, population health monitoring,
online recommendation systems, traffic monitoring, fuel con-
sumption optimization, and cloud computing for industrial
control systems. For privacy, confidentiality or security rea-
sons, the participants benefiting from the services provided by
these systems generally do not want to release more infor-
mation than strictly necessary. In a smart grid for example,
a customer could receive better rates in exchange of continu-
ously sending to the utility company her instantaneous power
consumption, thereby helping to improve the demand forecast
mechanism. In doing so however, she is also informing the
utility or a potential eavesdropper about the type of appliances
she owns as well as her daily activities [1]. Similarly, individ-
ual private signals can be recovered from published outputs
aggregated from many users, and anonymizing a dataset is
not enough to guarantee privacy, due to the existence of public
side information. This is demonstrated in [2], [3] for example,

J. Le Ny is with the department of Electrical Engineering, Ecole Poly-
technique de Montreal, QC H3T 1J4, Canada. G. Pappas is with the De-
partment of Electrical and Systems Engineering, University of Pennsylva-
nia, Philadelphia, PA 19104, USA. jerome.le-ny@polymtl.ca,
pappasg@seas.upenn.edu.

Preliminary versions of this paper appeared at Allerton 2012 and CDC
2012.

where private ratings and transactions from individuals on
commercial websites are successfully inferred with the help of
information from public recommendation systems. Emerging
traffic monitoring systems using position measurements from
smartphones [4] is another application area where individual
position traces can be re-identified by correlating them with
public information such as a person’s location of residence or
work [4], [5]. Hence, the development of rigorous privacy
preserving mechanisms is crucial to address the justified
concerns of potential users and thus encourage an increasing
level of participation, which can in turn greatly improve the
efficiency of these large-scale systems.

Precisely defining what constitutes a breach of privacy is
a delicate task. A particularly successful recent definition of
privacy used in the database literature is that of differential
privacy [6], which is motivated by the fact that any useful
information provided by a dataset about a group of peo-
ple can compromise the privacy of specific individuals due
to the existence of side information. Differentially private
mechanisms randomize their responses to dataset analysis
requests and guarantee that whether or not an individual
chooses to contribute her data only marginally changes the
distribution over the published outputs. As a result, even an
adversary cross-correlating these outputs with other sources of
information cannot infer much more about specific individuals
after publication than before [7].

Most work related to privacy is concerned with the analysis
of static databases [6], [8]–[10], whereas cyber-physical sys-
tems clearly emphasize the need for mechanisms working with
dynamic, time-varying data streams. Recently, the problem of
releasing differentially private statistics when the input data
takes the form of a binary stream describing event occurrences
aggregated from many participants has been considered in
[11]–[13]. This work forms the basis for the scenario studied in
Section VI, and is discussed in more details in Section VI-B.
However, most of this paper is devoted to a different situation
where participants individually provide real-valued signals. A
differentially private version of the iterative averaging algo-
rithm for consensus is considered in [14]. In this case, the input
data to protect consists of the initial values of the participants
and is thus a single vector, but the update mechanism subject to
privacy attacks is dynamic. Information-theoretic approaches
have also been proposed to guarantee some level of privacy
when releasing time series [15], [16]. However, the resulting
privacy guarantees only hold if the statistics of the participants’
data streams obey the assumptions made (typically stationarity,
dependence and distributional assumptions), and require the
explicit statistical modeling of all available side information.
This task is very difficult in general as new, as-yet-unknown
side information can become available after releasing the
results. In contrast, differential privacy is a worst-case notion
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Fig. 1. Illustrative example of a system computing the sum of the moving averages (MA) of input signals contributed by n

individual participants. A differentially private version of this system, for the adjacency relation (5), will guarantee to user i that

the distribution of the output signal does not vary significantly when her input varies in ri-norm by at most bi. In particular,

the distribution of the output signal will not change significantly if user i’s input is zero (ui ⌘ 0, e.g., because the user is not

present), or is not zero but satisfies kuikri  bi.

We consider situations in which private participants contribute input signals driving a dynamic

system and the queries consist of output signals of this system. First, in this section, we assume

that the input of a system consists of n signals, one for each participant. An input signal is

denoted u = (u1, . . . , un), with ui ⌥ ⇥mi
ri,e for some mi ⌥ N and ri ⌥ [1,⌃]. A simple example

is that of a dynamic system releasing at each period the average over the past l periods of the

sum of the input values of the participants, i.e., with output 1
l

�t
k=t�l+1

�n
i=1 ui,k at time t, see

Fig. 1. For r = (r1, . . . , rn) and m = (m1, . . . ,mn), an adjacency relation can be defined on

lmr,e = ⇥m1
r1,e ⇥ . . .⇥ ⇥mn

rn,e for example by Adj(u, u⇥) if and only if u and u⇥ differ by exactly one

component signal, and moreover this deviation is bounded. That is, let us fix a set of nonnegative

numbers b = (b1, . . . , bn), bi ⌅ 0, and define

Adjb(u, u⇥) iff for some i,  ui � u⇥
i ri ⇤ bi, and uj = u⇥

j for all j �= i. (5)

A. Finite-Time Criterion for Differential Privacy

To approximate dynamic systems by versions respecting the differential privacy of the indi-

vidual participants, we consider mechanisms of the form M : ⇥mr,e⇥� ⇧ ⇥m
�

s,e, i.e., producing for

any input signal u ⌥ ⇥mr,e a stochastic process Mu with sample paths in ⇥m
�

s,e. As in the previous

section, this requires that we first specify the measurable sets of ⇥m
�

s,e. We start by defining in a

standard way the measurable sets of (Rm�
)N, the space of sequences with values in Rm� , to be

the �-algebra denoted Mm� generated by the so-called finite-dimensional cylinder sets of the

form {y ⌥ (Rm�
)N : y0:T ⌥ HT}, for T ⌅ 0 and HT ⌥ R(T+1)m�

, where y0:T denotes the vector

September 4, 2012 DRAFT
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•  Processing	
  binary	
  input	
  signal	
  (0-­‐1	
  events)	
  –	
  DP	
  linear	
  filter	
  approximaIon	
  
–  Event-­‐level	
  privacy:	
  each	
  user	
  contributes	
  a	
  unique	
  event:	
  two	
  inputs	
  differing	
  by	
  a	
  single	
  
event	
  must	
  be	
  hard	
  to	
  disInguish	
  

–  Ex:	
  Counter	
  [Dwork	
  et	
  al.,	
  2010],	
  [Chan	
  et	
  al.,	
  2011]	
  (unstable	
  stable	
  filter)	
  
–  Ex:	
  Certain	
  stable	
  filters	
  with	
  slowly	
  decreasing	
  impulse	
  response	
  [Bolot	
  et	
  al.,	
  2011]	
  	
  
–  Complicated	
  algorithms	
  (non-­‐recursive,	
  not	
  finite	
  memory),	
  hard	
  to	
  generalize,	
  poor	
  
performance	
  of	
  the	
  approach	
  for	
  the	
  approximaIon	
  of	
  stable	
  filters	
  



•  Approximate	
  filter	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  a	
  differenIally	
  private	
  version	
  

	
  

•  Adjacency	
  relaIon	
  

Differentially Private Filtering 

y =
Pn

i=1 Giui

Adjb(u, u0) i� for some i, kui � u0
ik2  B, and uj = u0

j for all j 6= i.
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Fig. 1. Illustrative example of a system computing the sum of the moving averages (MA) of input signals contributed by n

individual participants. A differentially private version of this system, for the adjacency relation (5), will guarantee to user i that

the distribution of the output signal does not vary significantly when her input varies in ri-norm by at most bi. In particular,

the distribution of the output signal will not change significantly if user i’s input is zero (ui ⌘ 0, e.g., because the user is not

present), or is not zero but satisfies kuikri  bi.

We consider situations in which private participants contribute input signals driving a dynamic

system and the queries consist of output signals of this system. First, in this section, we assume

that the input of a system consists of n signals, one for each participant. An input signal is

denoted u = (u1, . . . , un), with ui ⌥ ⇥mi
ri,e for some mi ⌥ N and ri ⌥ [1,⌃]. A simple example

is that of a dynamic system releasing at each period the average over the past l periods of the

sum of the input values of the participants, i.e., with output 1
l

�t
k=t�l+1

�n
i=1 ui,k at time t, see

Fig. 1. For r = (r1, . . . , rn) and m = (m1, . . . ,mn), an adjacency relation can be defined on

lmr,e = ⇥m1
r1,e ⇥ . . .⇥ ⇥mn

rn,e for example by Adj(u, u⇥) if and only if u and u⇥ differ by exactly one

component signal, and moreover this deviation is bounded. That is, let us fix a set of nonnegative

numbers b = (b1, . . . , bn), bi ⌅ 0, and define

Adjb(u, u⇥) iff for some i,  ui � u⇥
i ri ⇤ bi, and uj = u⇥

j for all j �= i. (5)

A. Finite-Time Criterion for Differential Privacy

To approximate dynamic systems by versions respecting the differential privacy of the indi-

vidual participants, we consider mechanisms of the form M : ⇥mr,e⇥� ⇧ ⇥m
�

s,e, i.e., producing for

any input signal u ⌥ ⇥mr,e a stochastic process Mu with sample paths in ⇥m
�

s,e. As in the previous

section, this requires that we first specify the measurable sets of ⇥m
�

s,e. We start by defining in a

standard way the measurable sets of (Rm�
)N, the space of sequences with values in Rm� , to be

the �-algebra denoted Mm� generated by the so-called finite-dimensional cylinder sets of the

form {y ⌥ (Rm�
)N : y0:T ⌥ HT}, for T ⌅ 0 and HT ⌥ R(T+1)m�

, where y0:T denotes the vector
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•  Approximate	
  filter	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  by	
  a	
  differenIally	
  private	
  version	
  
– Adjacency	
  relaIon	
  

Theorem	
  :	
  	
  For	
  (ε,δ)-­‐differenIal	
  privacy,	
  can	
  add	
  white	
  Gaussian	
  noise	
  
proporIonal	
  to	
  the	
  maximum	
  incremental	
  gain	
  with	
  respect	
  to	
  the	
  input	
  channels	
  

–  Incremental	
  gain:	
  	
  
– Generalizes	
  mechanism	
  of	
  [Dwork	
  et	
  al.,	
  2006]	
  to	
  dynamic	
  seyng	
  with	
  
conInuous	
  streams	
  of	
  real-­‐Ime	
  data	
  

–  System	
  and	
  control	
  theoreIc	
  tools	
  can	
  be	
  used	
  to	
  design	
  differenIally	
  
private	
  mechanisms	
  for	
  conInuous	
  data	
  streams	
  

Differentially Private Filtering 

y =
Pn

i=1 Giui

Adjb(u, u0) i� for some i, kui � u0
ik2  B, and uj = u0

j for all j 6= i.

k(Gu)0:T � (Gu0)0:T k2  �ku0:T � u0
0:T k2, 8u, u0, 8T
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  by	
  a	
  differenIally	
  private	
  version	
  
	
  

	
  

	
  

	
  

Theorem:	
  The	
  mechanism	
  M(u)=G(u)+w	
  where	
  w	
  is	
  white	
  noise	
  with	
  

	
   	
   	
   	
  	
  wt	
  ~	
  (Lap(B/ε))m	
  

	
  is	
  ε-­‐differenIally	
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•  Two	
  basic	
  architectures	
  for	
  (ε,δ)-­‐differenIal	
  privacy	
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Fig. 1. Illustrative example of a system computing the sum of the moving averages (MA) of input signals contributed by n

individual participants. A differentially private version of this system, for the adjacency relation (5), will guarantee to user i that

the distribution of the output signal does not vary significantly when her input varies in ri-norm by at most bi. In particular,

the distribution of the output signal will not change significantly if user i’s input is zero (ui ⌘ 0, e.g., because the user is not

present), or is not zero but satisfies kuikri  bi.

We consider situations in which private participants contribute input signals driving a dynamic

system and the queries consist of output signals of this system. First, in this section, we assume

that the input of a system consists of n signals, one for each participant. An input signal is

denoted u = (u1, . . . , un), with ui ⌥ ⇥mi
ri,e for some mi ⌥ N and ri ⌥ [1,⌃]. A simple example

is that of a dynamic system releasing at each period the average over the past l periods of the

sum of the input values of the participants, i.e., with output 1
l

�t
k=t�l+1

�n
i=1 ui,k at time t, see

Fig. 1. For r = (r1, . . . , rn) and m = (m1, . . . ,mn), an adjacency relation can be defined on

lmr,e = ⇥m1
r1,e ⇥ . . .⇥ ⇥mn

rn,e for example by Adj(u, u⇥) if and only if u and u⇥ differ by exactly one

component signal, and moreover this deviation is bounded. That is, let us fix a set of nonnegative

numbers b = (b1, . . . , bn), bi ⌅ 0, and define

Adjb(u, u⇥) iff for some i,  ui � u⇥
i ri ⇤ bi, and uj = u⇥

j for all j �= i. (5)

A. Finite-Time Criterion for Differential Privacy

To approximate dynamic systems by versions respecting the differential privacy of the indi-

vidual participants, we consider mechanisms of the form M : ⇥mr,e⇥� ⇧ ⇥m
�

s,e, i.e., producing for

any input signal u ⌥ ⇥mr,e a stochastic process Mu with sample paths in ⇥m
�

s,e. As in the previous

section, this requires that we first specify the measurable sets of ⇥m
�

s,e. We start by defining in a

standard way the measurable sets of (Rm�
)N, the space of sequences with values in Rm� , to be

the �-algebra denoted Mm� generated by the so-called finite-dimensional cylinder sets of the

form {y ⌥ (Rm�
)N : y0:T ⌥ HT}, for T ⌅ 0 and HT ⌥ R(T+1)m�

, where y0:T denotes the vector
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A Traffic Monitoring Example 

•  Traffic	
  velocity	
  esImaIon	
  using	
  individual	
  locaIon	
  traces	
  
from	
  smartphones	
  (ex:	
  Mobile	
  Millenium,	
  Bayen	
  et	
  al.)	
  

xi,t+1 =


1 Ts

0 1

�
xi,t + �i1


T 2
s /2 0
Ts 0

�
wi,t,

yi,t =
⇥
1 0

⇤
xi,t + �i2

⇥
0 1

⇤
wi,t

Estimate
1

n

nX

i=1

xi,2,t



Differentially Private Kalman Filtering 

•  For	
  Kalman	
  Filtering,	
  we	
  have	
  addiIonal	
  public	
  informaIon	
  about	
  the	
  dynamics	
  
generaIng	
  the	
  user	
  signals	
  

•  EsImaIon	
  objecIve:	
  

•  Adjacency	
  relaIon:	
  
	
  
–  Cannot	
  disInguish	
  between	
  two	
  sufficiently	
  close	
  state	
  trajectories	
  of	
  a	
  user	
  

x1
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xn

A
ggregator / Estim

ator

y1

y2

yn

ẑ

Adj�(x, x0) i� for some i, kxi � x0
ik2  �i, and xj = x0

j for all j 6= i.

xi,t+1 = Aixi,t +Biwi,t
yi,t = Cixi,t +Diwi,t

min
ẑ

lim
T!1

1
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T�1X

t=0

E
⇥
kzt � ẑtk22
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Differentially Private Kalman Filtering 
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Kalman Filtering - Differentially Private Mechanisms 

•  Can	
  add	
  the	
  previous	
  input	
  and	
  output	
  perturbaIon	
  schemes	
  
to	
  the	
  standard	
  Kalman	
  filter	
  

•  For	
  the	
  input	
  perturbaIon	
  scheme,	
  can	
  take	
  into	
  account	
  the	
  
addiIonal	
  privacy-­‐preserving	
  noise	
  in	
  the	
  redesign	
  of	
  the	
  KF	
  

x1
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xn

ẑ

G1

G2

Gn

+

y1

y2

yn

Input pert. 

Output pert. xi,t+1 = Aixi,t +Biwi,t

yi,t = Cixi,t +Diwi,t



Filter Redesign for Output Perturbation Scheme 

•  For	
  the	
  output	
  perturbaIon	
  scheme,	
  can	
  redesign	
  the	
  filter	
  to	
  
trade-­‐off	
  the	
  esImaIon	
  error	
  and	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  norm	
  of	
  the	
  filter	
  
– Overall	
  MSE	
  is	
  	
  	
  

	
  

•  MulI-­‐objecIve	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  opImizaIon	
  problem	
  
– Lyapunov	
  shaping	
  using	
  Linear	
  Matrix	
  InequaliIes	
  
– DisInguish	
  between	
  stable	
  and	
  unstable	
  dynamics	
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!
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A Traffic Monitoring Example 

•  Traffic	
  velocity	
  esImaIon	
  using	
  
individual	
  locaIon	
  traces	
  from	
  
smartphones	
  (ex:	
  Mobile	
  
Millenium,	
  Bayen	
  et	
  al.)	
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Traffic Monitoring – input versus output architectures 
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Traffic Monitoring – utility/privacy tradeoff  



Traffic Monitoring – convergence/privacy tradeoff  



Summary 

•  Many	
  cyber-­‐physical	
  applicaIons	
  raise	
  privacy	
  concerns	
  that	
  
need	
  to	
  be	
  addressed	
  to	
  encourage	
  user	
  parIcipaIon	
  

•  Need	
  privacy-­‐preserving	
  mechanisms	
  for	
  various	
  types	
  of	
  
dynamic	
  systems	
  and	
  data	
  

•  Characterizing	
  privacy-­‐uIlity	
  tradeoff	
  requires	
  a	
  quanItaIve	
  
definiIon	
  of	
  privacy	
  

•  System	
  and	
  control	
  theoreIc	
  tools	
  (opImal	
  esImators,	
  system	
  
gains)	
  can	
  be	
  used	
  to	
  design	
  differenIally	
  private	
  mechanisms	
  



Next steps 
	
  

•  Fundamental	
  limits	
  between	
  privacy	
  and	
  performance	
  

•  Scaling	
  laws	
  	
  

•  Apply	
  to	
  Smart	
  Meter	
  models	
  and	
  data	
  

•  Protect	
  controllers	
  and	
  strategy	
  not	
  data	
  

•  Privacy	
  pricing	
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