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Privacy Concerns - SmartGrid 
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he time you jump into the 
shower in the morning, 

the time you !nally "ick off that 
TV at night — even the time you 
set your home security alarm.

Ontario’s privacy czar wants 

THEY KNOW WHEN YOU ARE SLEEPING ...

THEY KNOW WHEN YOU ARE AWAKE ... THEY KNOW WHEN YOU 
ARE IN THE SHOWER ...

What time you sleep,cook, shower, turn 
on the tv, or set the alarm system can 
be tracked by the province’s emerging 
smart grid hydro system, possibly tipping 
off thieves to a household’s habits. “This 
thing has to be protected like Fort Knox,” 
says Ontario’s privacy commissioner Ann 
Cavoukian.

Toronto Star, May 12, 2010 
Tanya Talaga

Hydro meter info a boon for thieves, marketers, and must be protected, privacy czar says

to keep the information 
secret. Personal privacy must 
remain paramount as the “smart 
grid” electricity system is built 
around the province, said Ann 
Cavoukian, Ontario’s information 
and privacy commissioner.

As the grid collects information 
on power usage and smart 
meters are installed in Ontario 
homes to track consumption 
data, that personal information 
could represent a treasure 
trove for hackers, thieves or 

T
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Privacy Concerns – Mobile Millenium 



Privacy challenges 

	  

• What	  is	  privacy,	  formally?	  

•  Is	  there	  a	  tradeoff	  between	  privacy	  and	  uIlity?	  

•  Privacy-‐aware	  esImaIon	  and	  control	  	  

•  Systems	  and	  control	  tools	  for	  privacy	  



Privacy is not anonymity 

+ 

	  

	  

•  Privacy	  breaches	  generally	  due	  to	  existence	  of	  side	  informaIon	  
– Mass.	  GIC	  medical	  db	  w/	  voter	  registraIon	  db	  (Sweeney,	  1997)	  
– NeRlix	  prize	  w/	  IMDB	  (Narayana	  &	  ShmaIkov,	  2008)	  
–  Individual	  online	  transacIons	  w/	  changes	  in	  public	  
recommendaIon	  systems	  (Calandrino	  et	  al.,	  2011)	  

– Anonymity	  in	  locaIon	  based	  services	  

•  Can’t	  know	  what	  the	  adversary	  knows,	  or	  might	  know	  in	  the	  future.	  



Differential Privacy 

Cynthia	  Dwork.	  "DifferenIal	  privacy.”	  
Automata,	  languages	  and	  programming.	  
Springer	  Berlin	  Heidelberg,	  2006.	  1-‐12.	  



Differential Privacy, informally 

•  Set-‐up:	  
	  

	  

•  Key	  Idea: 	  	  
– A	  differenIally	  private	  mechanism	  randomly	  perturbs	  the	  answers	  to	  a	  
query	  so	  that	  the	  output	  distribuIon	  over	  answers	  does	  not	  vary	  much	  if	  
any	  given	  individual	  parIcipates	  or	  not	  

– Hard	  to	  infer	  if	  the	  data	  of	  any	  individual	  was	  used	  or	  not	  to	  answer	  the	  
query	  

Database

 resp. 1 resp. n

resp. 2

db mgmt system

analyst 
/ userqueries

sanitized answers
(public)



Differential Privacy, informally 



Differential Privacy, formally 

•  Set-‐up:	  
	  

	  

•  Formally	  
•  Adj(d,d’)	  a	  symmetric	  binary	  relaIon	  on	  the	  set	  D	  of	  databases	  	  
•  Adjacent	  databases	  differ	  by	  the	  data	  of	  a	  single	  individual	  
•  A	  mechanism	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  (ε,δ)-‐DP	  if	  	  
for	  all	  sets	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  all	  databases	  d,	  d’	  s.t.	  Adj(d,d’),	  we	  have	  

Database

 resp. 1 resp. n

resp. 2

db mgmt system

analyst 
/ userqueries

sanitized answers
(public)

M : D � � ⇥ (R,M)

P(M(d) 2 S)  e✏P(M(d0) 2 S) + �



Differential Privacy, formally 

•  Constant	  ε	  is	  typically	  small	  (i.e.	  ~	  0.1)	   	  -‐	  mulIplicaIve	  error	  

•  Constant	  δ	  is	  very	  small	  (i.e.	  ~0.01)	   	  -‐	  addiIve	  error	  

•  If	  δ=0	  then	  we	  have	  (ε,0)-‐DP	  or	  simply	  ε-‐DP	  

•  Privacy	  definiIon	  depends	  on	  adjacency	  relaIon	  

	  

P(M(d) 2 S)  e✏P(M(d0) 2 S) + �



Two Basic Differentially Private Mechanisms 

•  Database	  of	  CPS	  PI	  salaries	  d	  =	  [d1,…dn]	  
•  Adjacency:	  	  

–  R	  =	  max	  {ρi}	  
•  Analyst	  Query:	  	  

•  The	  mechanism	  M(d)	  =	  q(d)	  +	  Lap(R/ε)	  is	  ε-‐DP	  	  

•  The	  mechanism	  M(d)	  =	  q(d)	  +	  N(0,(κ(δ,ε)	  R)2)	  is	  (ε,δ)-‐DP	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

q(d) =
1

n

nX

i=1

di

Adj(d, d0) i↵ for some i, |di � d0i|  ⇢i

dj = d0j , j 6= i

(�, ✏)  2
p

2 ln(2/�)/✏

✓
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Resilience to post-processing 

If	  mechanism	  M(d)	  is	  (ε,δ)-‐differenIally	  private	  and	  f	  is	  an	  
arbitrary	  funcIon,	  then	  f	  (M(d))	  is	  also	  (ε,δ)-‐differenIally	  private	  	  

•  f	  as	  the	  adversaries	  :	  Models	  arbitrary	  auxiliary	  or	  side	  
informaIon	  informaIon	  the	  adversary	  may	  have.	  Privacy	  
guarantee	  holds	  no	  mauer	  what	  adversary	  does.	  	  

•  f	  as	  our	  algorithm:	  If	  we	  access	  the	  database	  in	  a	  differenIally	  
private	  way,	  we	  don’t	  have	  to	  worry	  about	  how	  our	  algorithm	  
post-‐processes	  the	  result.	  	  

	  



Differential privacy in computer science 

•  Data	  mining	  with	  differenIal	  privacy	   	  A.	  Friedman	  	  2010	  

•  Combinatorial	  opImizaIon	  with	  privacy	   	  A.	  Roth	  et	  al	  2010	  

•  Mechanism	  design	  via	  differenIal	  privacy 	  M.	  Kearns	  et	  al	  2012	  

•  Privacy	  aware	  learning 	   	   	  J.	  Duchi	  2013	  

•  Streaming	  conInuous	  data	   	   	  C.	  Dwork	  et	  al	  2010	  



Differential Private Filtering 

Jerome	  Le	  Ny	  and	  George	  J.	  Pappas	  
DifferenIally	  private	  filtering	  
IEEE	  TransacIons	  on	  AutomaIc	  Control	  
February	  2014.	  
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Differentially Private Filtering
Jerome Le Ny, Member, IEEE, and George J. Pappas, Fellow, IEEE

Abstract—Emerging systems such as smart grids or intelli-
gent transportation systems often require end-user applications
to continuously send information to external data aggregators
performing monitoring or control tasks. This can result in an
undesirable loss of privacy for the users in exchange of the
benefits provided by the application. Motivated by this trend, this
paper introduces privacy concerns in a system theoretic context,
and addresses the problem of releasing filtered signals that
respect the privacy of the user data streams. Our approach relies
on a formal notion of privacy from the database literature, called
differential privacy, which provides strong privacy guarantees
against adversaries with arbitrary side information. Methods
are developed to approximate a given filter by a differentially
private version, so that the distortion introduced by the privacy
mechanism is minimized. Two specific scenarios are considered.
First, the notion of differential privacy is extended to dynamic
systems with many participants contributing independent input
signals. Kalman filtering is also discussed in this context, when a
released output signal must preserve differential privacy for the
measured signals or state trajectories of the individual partici-
pants. Second, differentially private mechanisms are described to
approximate stable filters when participants contribute to a single
event stream, extending previous work on differential privacy
under continual observation.

Index Terms—Privacy, Filtering, Kalman Filtering, Estimation

I. INTRODUCTION

A RAPIDLY growing number of applications requires
users to release private data streams to third-party appli-

cations for signal processing and decision-making purposes.
Examples include smart grids, population health monitoring,
online recommendation systems, traffic monitoring, fuel con-
sumption optimization, and cloud computing for industrial
control systems. For privacy, confidentiality or security rea-
sons, the participants benefiting from the services provided by
these systems generally do not want to release more infor-
mation than strictly necessary. In a smart grid for example,
a customer could receive better rates in exchange of continu-
ously sending to the utility company her instantaneous power
consumption, thereby helping to improve the demand forecast
mechanism. In doing so however, she is also informing the
utility or a potential eavesdropper about the type of appliances
she owns as well as her daily activities [1]. Similarly, individ-
ual private signals can be recovered from published outputs
aggregated from many users, and anonymizing a dataset is
not enough to guarantee privacy, due to the existence of public
side information. This is demonstrated in [2], [3] for example,

J. Le Ny is with the department of Electrical Engineering, Ecole Poly-
technique de Montreal, QC H3T 1J4, Canada. G. Pappas is with the De-
partment of Electrical and Systems Engineering, University of Pennsylva-
nia, Philadelphia, PA 19104, USA. jerome.le-ny@polymtl.ca,
pappasg@seas.upenn.edu.

Preliminary versions of this paper appeared at Allerton 2012 and CDC
2012.

where private ratings and transactions from individuals on
commercial websites are successfully inferred with the help of
information from public recommendation systems. Emerging
traffic monitoring systems using position measurements from
smartphones [4] is another application area where individual
position traces can be re-identified by correlating them with
public information such as a person’s location of residence or
work [4], [5]. Hence, the development of rigorous privacy
preserving mechanisms is crucial to address the justified
concerns of potential users and thus encourage an increasing
level of participation, which can in turn greatly improve the
efficiency of these large-scale systems.

Precisely defining what constitutes a breach of privacy is
a delicate task. A particularly successful recent definition of
privacy used in the database literature is that of differential
privacy [6], which is motivated by the fact that any useful
information provided by a dataset about a group of peo-
ple can compromise the privacy of specific individuals due
to the existence of side information. Differentially private
mechanisms randomize their responses to dataset analysis
requests and guarantee that whether or not an individual
chooses to contribute her data only marginally changes the
distribution over the published outputs. As a result, even an
adversary cross-correlating these outputs with other sources of
information cannot infer much more about specific individuals
after publication than before [7].

Most work related to privacy is concerned with the analysis
of static databases [6], [8]–[10], whereas cyber-physical sys-
tems clearly emphasize the need for mechanisms working with
dynamic, time-varying data streams. Recently, the problem of
releasing differentially private statistics when the input data
takes the form of a binary stream describing event occurrences
aggregated from many participants has been considered in
[11]–[13]. This work forms the basis for the scenario studied in
Section VI, and is discussed in more details in Section VI-B.
However, most of this paper is devoted to a different situation
where participants individually provide real-valued signals. A
differentially private version of the iterative averaging algo-
rithm for consensus is considered in [14]. In this case, the input
data to protect consists of the initial values of the participants
and is thus a single vector, but the update mechanism subject to
privacy attacks is dynamic. Information-theoretic approaches
have also been proposed to guarantee some level of privacy
when releasing time series [15], [16]. However, the resulting
privacy guarantees only hold if the statistics of the participants’
data streams obey the assumptions made (typically stationarity,
dependence and distributional assumptions), and require the
explicit statistical modeling of all available side information.
This task is very difficult in general as new, as-yet-unknown
side information can become available after releasing the
results. In contrast, differential privacy is a worst-case notion
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Fig. 1. Illustrative example of a system computing the sum of the moving averages (MA) of input signals contributed by n

individual participants. A differentially private version of this system, for the adjacency relation (5), will guarantee to user i that

the distribution of the output signal does not vary significantly when her input varies in ri-norm by at most bi. In particular,

the distribution of the output signal will not change significantly if user i’s input is zero (ui ⌘ 0, e.g., because the user is not

present), or is not zero but satisfies kuikri  bi.

We consider situations in which private participants contribute input signals driving a dynamic

system and the queries consist of output signals of this system. First, in this section, we assume

that the input of a system consists of n signals, one for each participant. An input signal is

denoted u = (u1, . . . , un), with ui ⌥ ⇥mi
ri,e for some mi ⌥ N and ri ⌥ [1,⌃]. A simple example

is that of a dynamic system releasing at each period the average over the past l periods of the

sum of the input values of the participants, i.e., with output 1
l

�t
k=t�l+1

�n
i=1 ui,k at time t, see

Fig. 1. For r = (r1, . . . , rn) and m = (m1, . . . ,mn), an adjacency relation can be defined on

lmr,e = ⇥m1
r1,e ⇥ . . .⇥ ⇥mn

rn,e for example by Adj(u, u⇥) if and only if u and u⇥ differ by exactly one

component signal, and moreover this deviation is bounded. That is, let us fix a set of nonnegative

numbers b = (b1, . . . , bn), bi ⌅ 0, and define

Adjb(u, u⇥) iff for some i,  ui � u⇥
i ri ⇤ bi, and uj = u⇥

j for all j �= i. (5)

A. Finite-Time Criterion for Differential Privacy

To approximate dynamic systems by versions respecting the differential privacy of the indi-

vidual participants, we consider mechanisms of the form M : ⇥mr,e⇥� ⇧ ⇥m
�

s,e, i.e., producing for

any input signal u ⌥ ⇥mr,e a stochastic process Mu with sample paths in ⇥m
�

s,e. As in the previous

section, this requires that we first specify the measurable sets of ⇥m
�

s,e. We start by defining in a

standard way the measurable sets of (Rm�
)N, the space of sequences with values in Rm� , to be

the �-algebra denoted Mm� generated by the so-called finite-dimensional cylinder sets of the

form {y ⌥ (Rm�
)N : y0:T ⌥ HT}, for T ⌅ 0 and HT ⌥ R(T+1)m�

, where y0:T denotes the vector

September 4, 2012 DRAFT
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•  Processing	  binary	  input	  signal	  (0-‐1	  events)	  –	  DP	  linear	  filter	  approximaIon	  
–  Event-‐level	  privacy:	  each	  user	  contributes	  a	  unique	  event:	  two	  inputs	  differing	  by	  a	  single	  
event	  must	  be	  hard	  to	  disInguish	  

–  Ex:	  Counter	  [Dwork	  et	  al.,	  2010],	  [Chan	  et	  al.,	  2011]	  (unstable	  stable	  filter)	  
–  Ex:	  Certain	  stable	  filters	  with	  slowly	  decreasing	  impulse	  response	  [Bolot	  et	  al.,	  2011]	  	  
–  Complicated	  algorithms	  (non-‐recursive,	  not	  finite	  memory),	  hard	  to	  generalize,	  poor	  
performance	  of	  the	  approach	  for	  the	  approximaIon	  of	  stable	  filters	  



•  Approximate	  filter	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  by	  a	  differenIally	  private	  version	  

	  

•  Adjacency	  relaIon	  

Differentially Private Filtering 

y =
Pn

i=1 Giui

Adjb(u, u0) i� for some i, kui � u0
ik2  B, and uj = u0

j for all j 6= i.
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Fig. 1. Illustrative example of a system computing the sum of the moving averages (MA) of input signals contributed by n

individual participants. A differentially private version of this system, for the adjacency relation (5), will guarantee to user i that

the distribution of the output signal does not vary significantly when her input varies in ri-norm by at most bi. In particular,

the distribution of the output signal will not change significantly if user i’s input is zero (ui ⌘ 0, e.g., because the user is not

present), or is not zero but satisfies kuikri  bi.

We consider situations in which private participants contribute input signals driving a dynamic

system and the queries consist of output signals of this system. First, in this section, we assume

that the input of a system consists of n signals, one for each participant. An input signal is

denoted u = (u1, . . . , un), with ui ⌥ ⇥mi
ri,e for some mi ⌥ N and ri ⌥ [1,⌃]. A simple example

is that of a dynamic system releasing at each period the average over the past l periods of the

sum of the input values of the participants, i.e., with output 1
l

�t
k=t�l+1

�n
i=1 ui,k at time t, see

Fig. 1. For r = (r1, . . . , rn) and m = (m1, . . . ,mn), an adjacency relation can be defined on

lmr,e = ⇥m1
r1,e ⇥ . . .⇥ ⇥mn

rn,e for example by Adj(u, u⇥) if and only if u and u⇥ differ by exactly one

component signal, and moreover this deviation is bounded. That is, let us fix a set of nonnegative

numbers b = (b1, . . . , bn), bi ⌅ 0, and define

Adjb(u, u⇥) iff for some i,  ui � u⇥
i ri ⇤ bi, and uj = u⇥

j for all j �= i. (5)

A. Finite-Time Criterion for Differential Privacy

To approximate dynamic systems by versions respecting the differential privacy of the indi-

vidual participants, we consider mechanisms of the form M : ⇥mr,e⇥� ⇧ ⇥m
�

s,e, i.e., producing for

any input signal u ⌥ ⇥mr,e a stochastic process Mu with sample paths in ⇥m
�

s,e. As in the previous

section, this requires that we first specify the measurable sets of ⇥m
�

s,e. We start by defining in a

standard way the measurable sets of (Rm�
)N, the space of sequences with values in Rm� , to be

the �-algebra denoted Mm� generated by the so-called finite-dimensional cylinder sets of the

form {y ⌥ (Rm�
)N : y0:T ⌥ HT}, for T ⌅ 0 and HT ⌥ R(T+1)m�

, where y0:T denotes the vector
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•  Approximate	  filter	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  by	  a	  differenIally	  private	  version	  
– Adjacency	  relaIon	  

Theorem	  :	  	  For	  (ε,δ)-‐differenIal	  privacy,	  can	  add	  white	  Gaussian	  noise	  
proporIonal	  to	  the	  maximum	  incremental	  gain	  with	  respect	  to	  the	  input	  channels	  

–  Incremental	  gain:	  	  
– Generalizes	  mechanism	  of	  [Dwork	  et	  al.,	  2006]	  to	  dynamic	  seyng	  with	  
conInuous	  streams	  of	  real-‐Ime	  data	  

–  System	  and	  control	  theoreIc	  tools	  can	  be	  used	  to	  design	  differenIally	  
private	  mechanisms	  for	  conInuous	  data	  streams	  

Differentially Private Filtering 

y =
Pn

i=1 Giui

Adjb(u, u0) i� for some i, kui � u0
ik2  B, and uj = u0

j for all j 6= i.

k(Gu)0:T � (Gu0)0:T k2  �ku0:T � u0
0:T k2, 8u, u0, 8T



Approximate	  filter	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  by	  a	  differenIally	  private	  version	  
	  

	  

	  

	  

Theorem:	  The	  mechanism	  M(u)=G(u)+w	  where	  w	  is	  white	  noise	  with	  

	   	   	   	  	  wt	  ~	  (Lap(B/ε))m	  

	  is	  ε-‐differenIally	  private.	  

	  

Differentially Private Filtering 
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Approximate	  filter	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  by	  a	  differenIally	  private	  version	  
	  

	  

	  

	  

Theorem:	  The	  mechanism	  M(u)=G(u)+w	  where	  w	  is	  white	  noise	  with	  

	   	   	  	  	  	  	  	  	  	  	  wt	  ~	  N(0,	  σ2Im)	  

	  is	  (ε,δ)-‐differenIally	  private.	  
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•  Two	  basic	  architectures	  for	  (ε,δ)-‐differenIal	  privacy	  
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Event Streams Counters 
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Fig. 1. Illustrative example of a system computing the sum of the moving averages (MA) of input signals contributed by n

individual participants. A differentially private version of this system, for the adjacency relation (5), will guarantee to user i that

the distribution of the output signal does not vary significantly when her input varies in ri-norm by at most bi. In particular,

the distribution of the output signal will not change significantly if user i’s input is zero (ui ⌘ 0, e.g., because the user is not

present), or is not zero but satisfies kuikri  bi.

We consider situations in which private participants contribute input signals driving a dynamic

system and the queries consist of output signals of this system. First, in this section, we assume

that the input of a system consists of n signals, one for each participant. An input signal is

denoted u = (u1, . . . , un), with ui ⌥ ⇥mi
ri,e for some mi ⌥ N and ri ⌥ [1,⌃]. A simple example

is that of a dynamic system releasing at each period the average over the past l periods of the

sum of the input values of the participants, i.e., with output 1
l

�t
k=t�l+1

�n
i=1 ui,k at time t, see

Fig. 1. For r = (r1, . . . , rn) and m = (m1, . . . ,mn), an adjacency relation can be defined on

lmr,e = ⇥m1
r1,e ⇥ . . .⇥ ⇥mn

rn,e for example by Adj(u, u⇥) if and only if u and u⇥ differ by exactly one

component signal, and moreover this deviation is bounded. That is, let us fix a set of nonnegative

numbers b = (b1, . . . , bn), bi ⌅ 0, and define

Adjb(u, u⇥) iff for some i,  ui � u⇥
i ri ⇤ bi, and uj = u⇥

j for all j �= i. (5)

A. Finite-Time Criterion for Differential Privacy

To approximate dynamic systems by versions respecting the differential privacy of the indi-

vidual participants, we consider mechanisms of the form M : ⇥mr,e⇥� ⇧ ⇥m
�

s,e, i.e., producing for

any input signal u ⌥ ⇥mr,e a stochastic process Mu with sample paths in ⇥m
�

s,e. As in the previous

section, this requires that we first specify the measurable sets of ⇥m
�

s,e. We start by defining in a

standard way the measurable sets of (Rm�
)N, the space of sequences with values in Rm� , to be

the �-algebra denoted Mm� generated by the so-called finite-dimensional cylinder sets of the

form {y ⌥ (Rm�
)N : y0:T ⌥ HT}, for T ⌅ 0 and HT ⌥ R(T+1)m�

, where y0:T denotes the vector
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A Traffic Monitoring Example 

•  Traffic	  velocity	  esImaIon	  using	  individual	  locaIon	  traces	  
from	  smartphones	  (ex:	  Mobile	  Millenium,	  Bayen	  et	  al.)	  
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Differentially Private Kalman Filtering 

•  For	  Kalman	  Filtering,	  we	  have	  addiIonal	  public	  informaIon	  about	  the	  dynamics	  
generaIng	  the	  user	  signals	  

•  EsImaIon	  objecIve:	  

•  Adjacency	  relaIon:	  
	  
–  Cannot	  disInguish	  between	  two	  sufficiently	  close	  state	  trajectories	  of	  a	  user	  
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Differentially Private Kalman Filtering 
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ẑ

xi,t+1 = Aixi,t +Biwi,t

yi,t = Cixi,t +Diwi,t

zt =
nX

i=1

Lixi,t



Kalman Filtering - Differentially Private Mechanisms 

•  Can	  add	  the	  previous	  input	  and	  output	  perturbaIon	  schemes	  
to	  the	  standard	  Kalman	  filter	  

•  For	  the	  input	  perturbaIon	  scheme,	  can	  take	  into	  account	  the	  
addiIonal	  privacy-‐preserving	  noise	  in	  the	  redesign	  of	  the	  KF	  
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Output pert. xi,t+1 = Aixi,t +Biwi,t
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Filter Redesign for Output Perturbation Scheme 

•  For	  the	  output	  perturbaIon	  scheme,	  can	  redesign	  the	  filter	  to	  
trade-‐off	  the	  esImaIon	  error	  and	  the	  	  	  	  	  	  	  	  	  norm	  of	  the	  filter	  
– Overall	  MSE	  is	  	  	  

	  

•  MulI-‐objecIve	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  opImizaIon	  problem	  
– Lyapunov	  shaping	  using	  Linear	  Matrix	  InequaliIes	  
– DisInguish	  between	  stable	  and	  unstable	  dynamics	  
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ẑ

G1

G2

Gn

+

y1

y2

yn

Output pert. 
xi,t+1 = Aixi,t +Biwi,t

yi,t = Cixi,t +Diwi,t

 
nX

i=1

⇥TF (wi � ei)⇥22

!
+ ⇤(�, ⇥)2 max

1in
{⌅2i ⇥TF (xi � ẑi)⇥21}
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A Traffic Monitoring Example 

•  Traffic	  velocity	  esImaIon	  using	  
individual	  locaIon	  traces	  from	  
smartphones	  (ex:	  Mobile	  
Millenium,	  Bayen	  et	  al.)	  
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Traffic Monitoring – input versus output architectures 
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Traffic Monitoring – utility/privacy tradeoff  



Traffic Monitoring – convergence/privacy tradeoff  



Summary 

•  Many	  cyber-‐physical	  applicaIons	  raise	  privacy	  concerns	  that	  
need	  to	  be	  addressed	  to	  encourage	  user	  parIcipaIon	  

•  Need	  privacy-‐preserving	  mechanisms	  for	  various	  types	  of	  
dynamic	  systems	  and	  data	  

•  Characterizing	  privacy-‐uIlity	  tradeoff	  requires	  a	  quanItaIve	  
definiIon	  of	  privacy	  

•  System	  and	  control	  theoreIc	  tools	  (opImal	  esImators,	  system	  
gains)	  can	  be	  used	  to	  design	  differenIally	  private	  mechanisms	  



Next steps 
	  

•  Fundamental	  limits	  between	  privacy	  and	  performance	  

•  Scaling	  laws	  	  

•  Apply	  to	  Smart	  Meter	  models	  and	  data	  

•  Protect	  controllers	  and	  strategy	  not	  data	  

•  Privacy	  pricing	  	  
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