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Distributed Algorithms for Wide-Area Control of
Power System Oscillations

Aranya Chakrabortty Member, IEEE

Abstract—This paper presents a distributed optimization al-
gorithm to address the highly pertinent problem of wide-area
damping control of large-scale electric power systems using
synchronized phasor measurements. Our approach consists of
a three-step strategy. First, Synchrophasors from selected nodes
in a power network are used to identify offline dynamic models of
the dominant areas of the network. Thereafter, a linear controller
is designed for this reduced-order model to shape the inter-
machine oscillation dynamics. Finally, algorithms are developed
to invert this design to realistic local controllers in each area
by optimizing the controller parameters until their interarea re-
sponse matches the closed-loop inter-machine response achieved
in the second step. A model reference control design following
this three-step strategy was recently proposed in [1] using a
centralized controller. Our results in this paper extend that design
by posing the problem purely from a perspective of distributed
optimization, and shows how excitation control parameters can
be updated in a distributed way for inter-area damping. This
idea will be particularly important as within the next few years
the number of PMUs in the US transmission network scales to
the thousands necessitating a distributed processing architecture
for wide-area monitoring and control. We illustrate our results
with a prototype power system models representing a transfer
path in the US west coast grid.

Index Terms—Distributed control, identification, parameter
tuning, optimization, transmission delay, Synchrophasors.

I. INTRODUCTION

Following the Northeast blackout of 2003, Wide-Area Mea-
surement System (WAMS) technology using Phasor Mea-
surement Units (PMUs) has largely matured for the North
American grid. However, as the number of PMUs scales
up into the thousands in the next few years under the US
Department of Energy’s smart grid demonstration initiative,
Independent System Operators (ISO) and utility companies are
struggling to understand how the resulting gigantic volumes
of real-time data can be efficiently harvested, processed, and
utilized to solve wide-area monitoring and control problems
for any realistic power system interconnection. It is rather
intuitive that the current state-of-the-art centralized communi-
cation and information processing architecture of WAMS will
no longer be sustainable under such a data explosion, and a
completely distributed cyber-physical architecture will need to
be developed. In the Eastern Interconnection (EI) of the US
grid, for example, about 60 PMUs are currently streaming data
via the Internet to a super phasor data concentrator (SPDC)
which is handling about 100,000 data points per second.
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Fig. 1. Proposed mechanisms of distributed monitoring and control

This architecture will no doubt become untenable as the EI
scales up to 300-400 PMUs by 2015. The North American
Synchrophasor Initiative (NASPI) is currently addressing this
architectural problem by developing new communication and
computing protocols for WAMS through NASPInet and Phasor
Gateway to facilitate PMU data communication between mul-
tiple utilities and control centers. However, almost no attention
has yet been paid to perhaps the most critical consequence of
this envisioned distributed architecture - namely distributed
algorithms. Partly due to the priorities set forth by PMU
installations, the NASPI community has not yet delved into
investigating how centralized algorithms for wide-area control
can be translated into a distributed computing framework once
the decentralized WAMS architecture is realized in the next
three to four years. Development of such algorithms will
obviously be imperative not only for increasing reliability
by eliminating single-point failures, but also for minimizing
network transit. Transmitting data across a wide-area com-
munication network (WAN) is expensive, the links can be
relatively slow, and the bandwidth per dollar will indeed grow
slower than other computing resources leading to distributed
PMU data processing followed by transmission of full or
partially processed outputs as a natural choice.

Motivated by this challenge, in this paper we address
the problem of distributed wide-area damping control using
Synchrophasor feedback. The proposed architecture is shown
in Figure 1. We assume the system to be composed of multiple
areas with a given set of PMU locations. Our strategy is to first
derive an offline reference model for the closed-loop system
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using model reduction, categorize the available PMUs into
area-level disjoint sets, and finally run a distributed optimiza-
tion problem for tuning the controller parameters of each area-
level power system stabilizer (or group of stabilizers) (PSS)
to match the cumulative output of the actual model with that
of the reference model. The main idea behind our design is
a so-called, novel control inversion framework which allows
PMU-based linear power system stabilizers (PSS) designs,
developed for reduced-order power systems, to be inverted
to PSS controllers in higher-order systems via suitable opti-
mization methods. A model reference control design following
this strategy was presented for two-area power systems in our
recent work, but the implementation was still centralized. This
paper extends that design by posing the control problem purely
from a distributed optimization perspective. The approach
consists of three precise steps, namely:

1. Model Reduction/Dynamic Equivalencing - where PMU
data are used offline to identify equivalent models of the
oscillation clusters of the entire power system based on the
differences in their coupling strengths. Our objective is to
design the PSS control for damping the oscillations between
these areas in a distributed fashion, for which we will simply
assume that the area models are available to us by prior
identification methods.

2. Aggregate Control - where output-feedback based linear
PSS are designed to achieve a desired closed-loop transient
response between every pair of clusters in the reduced-order
system, and

3. Control Inversion- where the aggregate control design
is distributed and tuned back to actual realistic controllers at
the generator terminals until the inter-area responses of the
full-order power system matches the respective inter-machine
responses of the reduced-order system.

The most generic way to formulate the control inversion
problem in the final step is to use functional optimization. This
means that assuming standard second-order swing dynamics
with first-order excitation for the jth hypothetically aggregated
machine in the reduced-order power system model, one may
first design output-feedback excitation controllers:

uj = f(y1(t), y2(t), ..., ym(t), k1, k2, ..., km) (1)

where yi(t) is a chosen set of variables (eg. voltage magni-
tude/phase angle, frequency, etc.) measured over time t ≥ 0
by a PMU installed at the ith bus in the reduced network,
and f(·) is a smooth, nonlinear damping function producing a
desired inter-machine transient response. Next, uj needs to
be distributed to each local machine belonging to the jth

area. A plausible approach for this would be to construct
nonlinear functions ρ(·) mapping each of the feedback gains
(k1, k2, ..., km) to each such machine. Stacking these func-
tions ρ(·) and the gains kj into vectors R and K, respectively,
the problem that we must, therefore, solve is:

min
R(K)

n∗∑
i=1

∫ T

o

||xij(t,R(K))− x̄ij(t,K)||2 st. K ∈ K∗,

(2)
for all j ∈ Ni, over time t ∈ [0, T ], where: n∗ is the total
number of areas, Ni is the index set for the neighboring

areas of area i, xij is the interarea state response (phase or
frequency) between ith and jth areas in the full-order system,
x̄ij is the designed inter-machine state response (phase or
frequency, respectively) between ith and jth machines in the
reduced-order system, and K∗ denotes a constraint set for the
feedback gains specifying their upper and lower bounds.

II. MAIN RESULT

We next describe a distributed optimization approach for
designing PSS controllers interacting across areas for damping
the interarea oscillation modes λs. The first step of the design
is based on the reduce-order model identified using PMU data,
as discussed in the previous section, followed by a control
inversion strategy, recently developed in [1]. These may be
summarized as follows:

1. A linear control design is performed for this reduced-
order model to guarantee a desired dynamic performance for
all the inter-machine power flows (which are equivalent to the
inter-area flows in the full-order model). These damped power
flow signals are used as references for the wide-area design
in the next step.

2. A distributed optimization problem is solved for tuning
actual PSS parameters in the full-order system until the
interarea response of this system replicates the closed-loop
inter-machine reference obtained in the previous step.

Mathematically, the second step can be posed as follows.
Let the state-variable model for the jth chosen generator with
a tunable PSS, for j = 1, ...m, be given as

δ̇j = ωj (3)
Mjω̇j = Pmj −Djωj − Pej (4)

τjĖj = −xdj
x′dj

Ej +
xdj − x′dj
x′dj

cos(δj − θj) + EFj (5)

where (5) represents the excitation system dynamics of the
generator, and EFj is the excitation control feedback for the
PSS. Let M be the set of bus indices where a PMU is installed,
and Mj be the subset of M that are available for output-
feedback to the jth PSS. The measurements in the set Mj are
denoted as yMj (t). Let the set of boundary buses separating
the areas be Eb, and the communication graph between the
different controllers be G. The distributed control problem then
reduces to designing the function ψ(·) for

EFj(t) = ψj(yMk(t), xk∈Nj (t− τjk), t), j = 1, ..,m (6)

where Nj is the neighbor set of jth controller following
from G, and τjk is the communication delay in the channel
connecting the jth and kth controllers, such that all closed-
loop state responses are bounded over time, and the ‘slow’
oscillation component of the relative phase angle difference
xpq(t) , (xp(t)−xq(t)) between every pair of boundary nodes
(p, q) ∈ Eb satisfy a desired response, which is precisely the
corresponding inter-machine reference signal designed in Step
2. However, we must remember that in the actual system the
signal xpq(t) will contain the contribution of both local and
inter-area modes. Hence, for an accurate tracking we must
filter this signal through a band-pass filter (BPF), whose pass-
band is designed to cover the typical inter-area frequency
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spectrum (0.1-1 Hz). We denote this BPF as G(s), and
design it using standard Butterworth filters. In Figure 1 this
filter is indicated in discrete-time as G(z) =

∑
i aiz

−i. The
filter coefficients can be designed, for example, using convex
optimization. Furthermore, we consider our PSS designs to
be linear, which means that essentially we need to design an
output feedback controller of the form

Cj(s) =
ρj0 + ρj1s+ ρj2s

2 + ...+ ρjjas
ja

ϑj0 + ϑj1s+ ϑj2s2 + ...+ ϑjjbs
jb

(7)

where ja and jb are fixed integers (practically, both should be
less than or equal to 3 since high-order controllers increase
processing delay). Denote the controller parameter set as

Rj = {ρj0, ..., ρjja , ϑj0, ..., ϑjjb}. (8)

The distributed control design problem then simply reduces to
a distributed parametric optimization problem for finding the
optimal Rj , j = 1, ...,m, that guarantees:

x(t) ∈ l2, min ||G(s)[xpq](t)− xdpq(t)||2, ∀(p, q) ∈ Eb (9)

over t ∈ [0, tf ], where, xdpq(t) is the desired power flow
response following from the pre-designed model in Step 2.

III. EXAMPLES

In this section we illustrate the results by considering a 3-
area model of Pacific AC intertie. The structure of this system
is shown in Figure 2(a), and is based on the WA-CA north
south power oscillation characteristics for which detailed PMU
data analysis has been done. The system is first reduced to
an equivalent 3-machine system characterized by 3 aggregate
inertias. All the machines are classical generator models with
identical parameters except for the machine inertias in each
area, as given in the Appendix. A relatively low value of
H3 makes the system act almost like a two-area system
with a dominant slow mode of approximately 0.5 Hz. Hence,
a second order Butterworth band-pass filter is designed for
filtering the modes from the PMU measurements of the form:

G(s) =
s(ωu − ωl)

s2 + (ωu − ωl)s+ ωuωl
(10)

with ωu = 0.9 Hz and ωl = 0.2 Hz. A simple lead controller
for Area 1 is designed to generate desired dynamic responses
for the inter-machine power flows. For the actual system in
Figure 2(b) C7(s) is kept fixed, and C1(s) through C6(s) are
designed using 2 zeros and 3 poles each, i.e.

Ci(s) =
ai1s+ ai2

s2 + bi2s+ bi3
, i = 1, .., 6. (11)

The controller parameters are provided in the Appendix. An
all-to-all communication between the 6 controllers is assumed.
The communication between C1-C6 and C2 − C3 are con-
sidered to be most prone to communication delays. It was
observed that the closed-loop matching deteriorates as the
delay increases, and after a certain threshold the matching
becomes unacceptable. It can be verified that the integrated
error between the distributed and centralized solution over
t ∈ [0, 5] is less than a set threshold of γ = 10−4 for
d1 = d2 = 0. The simulations are repeated for 450 MW power
transfer between Area 1 and 2 with similar observations.
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(a) 3-area, 7-machine power system
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Fig. 2. Distributed parametric optimization
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