
Interested in meeting the PIs? Attach post-it note below!

NSF Secure and Trustworthy Cyberspace Principal Investigators’ Meeting
Jan. 9 -11th 2017

Arlington, VA

ENCORE: ENhanced program protection through COmpiler-REwriter cooperation

PIs: Michael Franz (University of California, Irvine), Kevin Hamlen (University of Texas at Dallas),
Mathias Payer (Purdue University)

Problem Current Practice Proposed Practice

Applications
Moving Target Defense

In the time window from the discovery of a
vulnerability to the availability of a patch, we
can apply general-but-costly mitigations such
as bounds checking while a patch is
developed, tested, and distributed.

Shorten window of vulnerability

1. C. Zhang, S. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song. “VTrust: Regaining trust on virtual calls.”
In NDSS 2016.

2. X. Ge, N. Talele, M. Payer, and T. Jaeger. “Fine-Grained Control-Flow Integrity for Kernel Software.” In
EuroS&P 2016.

3. J. Lettner, B. Kollenda, A. Homescu, P. Larsen, F. Schuster, L. Davi, A.-R. Sadeghi, T. Holz, and M. Franz.
“Subversive-C: Abusing and Protecting Dynamic Message Dispatch.” In USENIX ATC 2016.

4. S. Volckaert, B. Coppens, A. Voulimeneas, A. Homescu, P. Larsen, B. De Sutter, and M. Franz.
“Secure and Efficient Application Monitoring and Replication.” In USENIX ATC 2016.

5. N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. Gross. “Control-flow bending: On the effectiveness of
control-flow integrity.” In USENIX SEC 2015.

6. I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der Kouwe. “TypeSan: Practical Type
Confusion Detection.” In ACM CCS 2016.

7. K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and A.-R. Sadeghi. “Leakage-Resilient
Layout Randomization for Mobile Devices.” In NDSS 2016.

Publications

Intermediate Results
ENCORE binaries:

ü Close or shorten window of vulnerability.
ü Present adversaries with moving target.
ü Facilitate adaptation of legacy binaries.
ü Enable binary rewriting without developer

assistance.

The additional information in ENCORE binaries
may facilitate reverse engineering. However, a
tunable range of disclosure options and
obfuscation allow intellectual property concerns
to be traded-off against performance.

Risks and rewards

vulnerability
discovered

day

0 59

mitigation
by patch

public
awareness

windows of vulnerability

mitigation by rewriting

current

proposed

Challenges:
• Software often outlives hardware.
• Applications break when host system

changes.
• Software compiled for lowest common

denominator makes poor use of actual
hardware.

Challenge: adversaries know what mitigations
they will need to bypass to exploit a particular
program.

Adaptation and Optimization

Run Rewrite

Run

RewriteRun

v1 v2

v3

code randomized

defenses =
unknown and changing

CFI appliedSFI applied

Run Rewrite Run

adapt to new operating environments

Specialize Specialize

rewrite binaries to make better
use of the underlying HW capabilities

Change the way compilers have been
constructed the last sixty-odd years:
1. Compiler retains structural information.
2. Simple binary analysis identifies what info

can be reliably recovered and what cannot.
3. Residual “hard to recover” information

embedded in output ENCORE binary.

• Consumers of software, for which no source
code is available must wait for vendors to fix
vulnerable programs.

• In 2014, the top 5 zero-day vulnerabilities
took 59 days to patch on average.

• Total window of vulnerability = 295 days.
• Binary rewriting could close the window of

vulnerability if the techniques were practical.

• Structural information is discarded by
compiler: speed and size is all that matters.

• Binary rewriters try to recover structural
information using complex analysis plus
unreliable guesses.

• Rewritten programs take up more space and
run slower than their original counterparts.

// my first program
#include <iostream>

int main()
{
 std::cout <<
"Hello World!";
}

Compile Run Rewrite Run

rewritten binary
is less efficient

essential information
is irretriveably lost // my first program

#include <iostream>

int main()
{
 std::cout <<
"Hello World!";
}

Compile Run Rewrite Run

rewritten binary
runs at full speed

ENCORE rewriter = simple analysis + reliable information

essential information
retained

Enforce forward-edge control-flow integrity:
• Embed list of permissible control-flow edges.
• Protect integrity of data structures containing

code pointers.
• Verify indirect control-flow transfers for C++

programs [1], C systems software (OS/VMM)
[2], Objective-C programs [3].

Protecting Control Flow
Type confusion bugs are emerging as an
important attack vector for C++ programs.

Challenge: correctness of
many downcasts is difficult
to check dynamically.

Solution: embed type info
to allow checking of
downcasts at run time.

Enforcing Type Safety

verified control-flow transfer

HMAC

code ptr

code ptr

table ptr

HMAC

verify
HMAC

verify
HMAC

protected data
structures

control-flow
transfer

load table
pointer

load code
pointer

abort abort

pass

fail fail

verify
target
type

abort

fail

pass

pass

vtable
pointer?

c?

b

b

vtable
pointer

c

B

class B {
int b;

};
class D: B {

int c;
virtual void d() {}

};
…
B *Bptr = new B;
D *Dptr = static_cast<D*>(B);
Dptr->c = 0x43; // Type confusion!
Dptr->d(); // Type confusion!

D

Bptr

Dptrlayouts defined
by programmer

layouts assumed
at run time

original program

instrumentation

type
management

metadata
storage

gettypeinfo
checkcast

bind
lookup

Type
Info

