
NSF Secure and Trustworthy Cyberspace Inaugural Principal Investigator Meeting
Nov. 27 -29th 2012

National Harbor, MD

Interested in meeting the PIs? Attach post-it note below! 

Evidence-Assisted Detection and  
Elimination of Security Vulnerabilities  

PIs: Emery Berger (Umass Amherst) and Tim Wood (GWU) 


EVADE Approach 
Tripwires 
•  Canaries, stack cookies, etc. 
•  Simplify detection of attacks 
Output Buffering 
•  Hold network packets, disk writes, 

irrevocable system calls between scans 
 

Post Attack Analysis 
•  Replay from last checkpoint to 

precisely identify root of attack 
•  Switch to honeypot mode and gather 

forensics while protecting data 

Many attacks leave behind evidence. Rather than try to prevent attacks, EVADE deploys 
lightweight tripwires that can be asynchronously scanned to find the trail left by an attack 
or exploit. By buffering external outputs until scans are complete, EVADE can guarantee 
that attacks will have no observable effect, while reducing overheads compared to 
memory safety techniques that require instrumentation. 

Fast Precise Error Detection [ICSE16] Security Scanning as a Service [HotCloud16] 

EVADE:  

EVADE Runtime 
•  Detects memory 

exploits or errors in 
unmodified programs 

 
Evade VM 
•  Hypervisor-based 

detection for guest OS 
and applications 

Round 2 Round 2

Ep
oc

h 
i+
1

Pre-Copy
Round 1 Round 3 Pa

us
e 

an
d 

Sa
ve

Ch
ec

k 
Tr

ip
wi

re
s

Re
le

as
e 

O
ut

pu
ts

Ep
oc

h 
i

Async Tripwire Checks
Buffer Outputs

EvadeVM Execution Timeline
Round 1

Normal Execution

Async Tripwire Checks
Buffer Outputs

Attack Executed

Rollback

Check
Fails

Replay as honeypot

Scanner Host

Introspected VM

Unmodified
Kernel

AppApp

Syscall 
Table Slab

VM VM VM VM

Primary Hosts

VMVM

ScaaS 
Agent

ScaaS 
Agent

Check-
points

Approve/Reject

CP
History

CP
History

CP
History

CP
History

Uses live VM checkpointing to save VM state 
VM Introspection allows scanner to understand VM 
memory and detect attacks 
Can rollback to past checkpoints for forensic analysis 

tem calls that modify this state when re-execution is required.
During execution, DOUBLETAKE manages various types of sys-

tem calls in an effort to reduce the number of epochs, which Sec-
tion 4.3 discusses. In practice, DOUBLETAKE limits the number of
epoch boundaries, amortizing the cost of program state checks. The
kind of checks employed depend on the particular dynamic analy-
sis being performed; Section 3 describes the details of the analyses
we have built on top of DOUBLETAKE.

2.2 Lightweight Replay
When program state checks indicate that an error occurred dur-

ing the current epoch, DOUBLETAKE replays execution from the
last checkpoint to pinpoint the error’s root cause. DOUBLETAKE
ensures that all program-visible state, including system call results
and memory allocations and deallocations, is identical to the orig-
inal run. During replay, DOUBLETAKE returns cached return val-
ues for most system calls, with special handling for some cases.
Section 4 describes in detail how DOUBLETAKE records and re-
executes system calls.

2.3 Deterministic Memory Management and
Tripwire Support

To be able to find the exact location of errors, DOUBLETAKE
requires that the replayed sequence of memory addresses gener-
ated by the underlying heap allocator be identical to the recorded
sequence. That is, the allocator must be deterministic: given the
same sequence of malloc and free requests, it must provide the
same addresses for allocated objects. DOUBLETAKE relies on this
determinism to be able to place instrumentation at the locations of
compromised tripwires.

Unfortunately, current system-supplied memory allocators are
non-deterministic: they are not guaranteed to provide the same
sequence of object addresses. These allocators grow the heap on
demand by invoking mmap (or a similar call on other operating
systems) to obtain memory from the system. However, because
of address-space layout randomization—now implemented on all
modern operating systems to increase security—mmap almost al-
ways returns different addresses when invoked. This effect means
that heap addresses in a replayed execution would likely differ from
the original.

DOUBLETAKE therefore replaces the default heap allocator with
a custom deterministic heap built with the HEAP LAYERS frame-
work [4]. In addition to providing repeatable sequences of ad-
dresses, DOUBLETAKE’s heap provides a number of other use-
ful features that improve DOUBLETAKE’s efficiency and simplify
building analyses using it:

• Efficiency via large chunk allocation. The DOUBLETAKE
heap obtains memory from the operating system in large chunks
and satisfies all memory allocations from them, reducing the
number of system calls that DOUBLETAKE must track and
thus lowering its overhead.

• Simplified tripwire installation. DOUBLETAKE’s heap also
makes the process of implanting tripwires easier. For exam-
ple, detection tools can easily interpose on heap operations to
alter memory allocation requests or defer the reuse of freed
memory, and can mark the status of each object in metadata
(e.g., via a dedicated object header that the heap provides for
this purpose).

• Efficient tripwire checking. Finally, DOUBLETAKE’s heap
makes tripwire checking far more efficient. It maintains a
shadow bitmap to identify the locations and status of heap

����	�	����
���������	�

���	��
���	����
��� ���	��
���	����
���

	����
���� ����	������	�

Figure 2: Heap organization used to provide evidence of buffer
overflow errors. Object headers and unrequested space within
allocated objects are filled with canaries; a corrupted canary
indicates an overflow occurred.

canaries, which allows it to use vectorized bit operations to
perform efficient checking at the end of each epoch.

Section 4.3 presents full details of DOUBLETAKE’s heap imple-
mentation.

2.4 Pinpointing Error Locations
During replay, DOUBLETAKE lets detection tools set hardware

watchpoints during re-execution to pinpoint error locations (i.e.,
on an overwritten canary). Modern architectures make available
a small number of watchpoints (four on x86). Each watchpoint
can be configured to pause program execution when a specific byte
or word of memory is accessed. While watchpoints are primarily
used by debuggers, DOUBLETAKE uses them to speed error loca-
tion during re-execution.

DOUBLETAKE’s watchpoints are particularly useful in combina-
tion with heap canaries. For example, during re-execution, DOU-
BLETAKE’s buffer overflow and use-after-free detectors place a watch-
point at the location of the overwritten canary to trap the instruc-
tion(s) responsible for the error.

3. ANALYSES
To demonstrate DOUBLETAKE’s generality and efficiency, we

implement a range of error-detection tools as evidence-based dy-
namic analyses. In particular, we implement the following three
detection tools with DOUBLETAKE:

• Heap buffer overflow detection (§3.1): when an application
writes outside the bounds of an allocated object,

• Use-after-free detection (§3.2): when an application writes
to freed memory (i.e., through a dangling pointer), and

• Memory leak detection (§3.3): when a heap object becomes
inaccessible but has not been explicitly freed.

For each of these tools, we describe the evidence that DOU-
BLETAKE observes or places to detect these errors, and how re-
execution and error isolation proceeds once an error is detected.
Note that because these analyses are orthogonal, they can all be
used simultaneously.

3.1 Heap Buffer Overflow Detection
Heap buffer overflows occur when programs write outside the

bounds of an allocated object. DOUBLETAKE reports an error when
it discovers that a canary value has been overwritten. When it finds
an overwritten canary, the detector places watchpoints during re-
execution to identify the instruction responsible for the overflow.

Evidence-Based Error Detection
Figure 2 presents an overview of the approach used to locate buffer
overflows. Our buffer overflow detector places canaries between

913

Runtime environment intercepts memory allocations 
and system calls 
Adds canaries around allocated objects as tripwires 
 
 
Detects buffer overflows, use-after-free, and other 
memory exceptions 
Incurs less than 5% overhead 

$�
$!&�
$!(�
$!*�
$!,�
%�

%!&�
%!(�
%!*�
%!,�
&�

($
$!�

���
	�
�

��

($
%!	

 ��
&�

($
'!�



�

(&
-!�


�

((
)!�

�	
��

�

()
*!�

��
���

()
,!�

���
��

(*
&!�
�	�

��
���

��

(*
(!�

&*
(��

�

(+
%!�

��
���

��

(+
'!�

���
��

(,
'!�

���
�

	�

��

('
'!�

��
�

((
(!�

��
��

((
+!�

��
����

()
$!�

��
���

�

()
'!�

��
���

�

(+
$!�
	�

�

(,
&!�

��
���

'�

��
��
��

���
��
�
�
��
��

�

��

��
��

��������������

�����������������

������������������	�

��������������������	�

&!'�

Figure 4: Runtime overhead of DOUBLETAKE (OF = Buffer Overflow Detection, ML = Memory Leak Detection, DP = Dangling
Pointers Detection) and AddressSanitizer, normalized to each benchmark’s original execution time. With all detections enabled,
DOUBLETAKE only introduces 4% performance overhead on average.

$�

)�

%$�

%)�

($
$!�

���
	�
�

��

($
%!	

 ��
&�

($
'!�



�

(&
-!�


�

((
)!�

�	
��

�

()
*!�

��
���

()
,!�

���
��

(*
&!�
�	�

��
���

��

(*
(!�

&*
(��

�

(+
%!�

��
���

��

(+
'!�

���
��

(,
'!�

���
�

	�

��

('
'!�

��
�

((
(!�

��
��

((
+!�

��
����

()
$!�

��
���

�

()
'!�

��
���

�

(+
$!�
	�

�

(,
&!�

��
���

'�

��
��
��

��

�
��
�

�
��
�

��
�
�

��
��
	
�
�

������
��

������
��

�������
������

'(�

Figure 5: Memory overhead of DOUBLETAKE and AddressSanitizer.

5.3 Effectiveness
We evaluate the effectiveness of DOUBLETAKE on a range of

applications, including synthetic test cases, standard benchmarks,
and real-world applications.

Synthetic test cases and benchmarks: We first evaluate DOU-
BLETAKE on 3 synthetic test cases, 26 test cases from the NIST
SAMATE Reference Dataset Project. This corpus includes 14 cases
with buffer overflows and 12 cases without overflows [17]. We also
evaluate DOUBLETAKE on 19 C/C++ benchmarks from the SPEC
CPU2006 benchmark suite.

For heap overflows, DOUBLETAKE detects all known overflows
in one synthetic test case and 14 test cases of SAMATE suite.
For the 12 cases without overflows in SAMATE suite, DOUBLE-
TAKE has no false positives. For the SPEC CPU2006 benchmarks,
DOUBLETAKE did not find any heap buffer overflows and use-
after-frees, which is the same result found with AddressSanitizer.
However, DOUBLETAKE detected a significant number of memory
leaks in perlbench and gcc of SPEC CPU2006, which we verified
using Valgrind’s Memcheck tool.

Real applications: We also ran DOUBLETAKE with a variety of
applications with known or implanted errors (see Table 3). To ver-
ify the effectiveness of DOUBLETAKE’s buffer overflow detection,
we collected applications from evaluations of prior tools, Bugzilla,
and bugbench [16, 20, 23, 43], including bc, gcc-4.4.7, gzip,
libHX, polymorph, and vim-6.3.

In every case, DOUBLETAKE detected all known or converted
errors. Converted errors are existing global or array overflows that
DOUBLETAKE currently cannnot detect; we converted these to heap
overflows to verify its effectiveness. DOUBLETAKE also identified

�����	���	���	�����
	����	������������	����� ����� !����������	���!�"#" "�" " !�"!���
��	��	������	���������	� ������������������� ������!���
�	����	���	����������	��&�'&&&&&'(&"���������
	�����	
�!�
�����#������#�������#��	�$�������$'*"
��!'+�
�
�������	���
	��������!��
�����#������#�������#��	�$�������$'*"
��!')�

Figure 6: An example report by DOUBLETAKE for buffer
overflow identification.

memory leaks in gcc-4.4.7 and vim-6.3, which we confirmed
with Valgrind. To evaluate the detection of use-after-free errors,
we manually injected errors on real applications, such as vim-7.3,
ls and wc. DOUBLETAKE identified all of these memory errors.

Note that the errors observed in these applications are triggered
only by specific inputs. In the common case, these applications per-
form as expected. This is exactly the case for which DOUBLETAKE
is ideal, since its low overhead is designed to make it feasible to use
it in deployed settings.

Detailed reporting: DOUBLETAKE reports precise information
aimed at helping programmers identify the exact causes of different
memory errors, as shown in Figure 6. For buffer overflows, DOU-
BLETAKE reports the call sites and line numbers of the overflow
and the original memory allocation. For memory leaks, DOUBLE-
TAKE reports the last call site of its memory allocation. For use-
after-frees error, DOUBLETAKE reports both allocation and deallo-
cation call sites, and the instruction(s) that wrote to the object after
it was freed.

Note that DOUBLETAKE can identify more errors than Address-

918


