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INTRODUCTION
The most common network models cannot repli-
cate the asymptotic behaviors of sparsity and
power law degree distribution.

In many network datasets, the basic units are the
edges (e.g., collaborations, interactions, phone
calls), suggesting an alternate theory for edge-
labeled networks and edge exchangeable net-
work models.

We prove that edge exchangeable models can
replicate sparsity and power law, and we develop
this new framework for network modeling.

Figure 1: Representations of network data.

NETWORK PROPERTIES
Many modern network datasets (Internet, collab-
oration networks, Facebook) exhibit

• sparsity: have few edges relative to the
number of vertices. In particular, a se-
quence of networks (Gn)n≥1 is sparse if

lim sup
n→∞

#edges(Gn)

#vertices(Gn)2
= 0;

• power law degree distribution: for large
k ≥ 1 the proportion of vertices of degree
k in Gn, written pk(Gn), satisfies

pk(Gn) ∼ k−γ as n→∞,

for some γ > 1.

Fact: Vertex-exchangeable models cannot repli-
cate either of these behaviors. (Aldous–Hoover)

HOLLYWOOD MODEL
Let (α, θ) satisfy 0 < α < 1 and θ > −α. Generate
a sequence of edges X1, X2, . . . sequentially by:

pr(Xn,j = i | Hn,j) ∝

∝
{
Dn,j(i)− α, i = 1, . . . , Vn(j),
θ + αVn(j), i = Vn(j) + 1,

where Xn = (Xn,1, Xn,2) are the vertices in the
nth edge.

The Hollywood model has a closed form expres-
sion for random edge-labeled networks of each fi-
nite size n ≥ 1 given by

pr(Yn = E ;α, θ) =

= αv(E)
(θ/α)↑v(E)

θ↑(2n)

∞∏
k=2

((1− α)↑(k−1))Nk(E)

where x↑j = x(x+1) · · · (x+j−1) is the ascending
factorial function, v(E) is the number of vertices,
and Nk(E) is the number of vertices of degree k.

PROPERTIES OF HOLLYWOOD
Theorem 2: The Hollywood model is edge ex-
changeable for all (α, θ, ν).

Theorem 3: For each n ≥ 1, let pn(k) =
Nk(Yn)/v(Yn), k ≥ 1, be the empirical degree dis-
tribution of Yn. Then, for every k ≥ 1,

pn(k) ∼ αk−(α+1)/Γ(1− α) a.s. as n→∞,

where Γ(t) =
∫∞
0
xt−1e−xdx is the gamma func-

tion. That is, (Yn)n≥1 has a power law degree dis-
tribution with exponent γ = 1 + α ∈ (1, 2).

Theorem 4: The expected number of vertices sat-
isfies

E(v(Yn)) ∼ Γ(θ + 1)

αΓ(θ + α)
(2n)α as n→∞.

Furthermore, if 1/2 < α < 1, then the network is
almost surely sparse.

Applications: The model also fits well to real net-
work data. See article for more details.REFERENCES
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EXCHANGEABILITY
Exchangeability: invariance with respect to rela-
beling.

Figure 2: Edge-exchangeable models assign equal
probability to isomorphic edge-labeled networks.

Figure 3: Vertex-exchangeable models assign equal
probability to isomorphic vertex-labeled graphs.

EDGE EXCHANGEABILITY
Let ν be a probability distribution on

∆↓ = {(fi,j)j≥i≥1 : fi,j ≥ 0 and
∞∑

j≥i≥1

fi,j = 1}.

Generate edges of network by taking f ∼ ν and,
given f , letting X1, X2, . . . be conditionally i.i.d.

P (Xk = {i, j} | f) = fi,j , j ≥ i ≥ 1. (1)

For example: X1 = {2, 4}, X2 = {1, 2}, X3 =
{1, 3}, X4 = {5, 6}, X5 = {2, 6}, X6 = {2, 6}

Figure 4: (a) Network with labeled vertices and edges.
(b) Edge exchangeable network after removing vertex
labels.

Theorem 1: Every edge exchangeable network
can be constructed as in (1) for some ν .

VERTEX COMPONENTS MODEL
Construct f = (fij)i,j≥1 from random sequence
W = (Wi)i≥1 in infinite simplex

∆1 = {(s1, s2, . . .) :
∑
i≥1

si = 1}

by putting

fij = WiWj , i, j ≥ 1. (2)

Stick-breaking: We can generate the sequence
X1, X2, . . . at the same time as W = (Wi)i≥1.

• Let {ϕi}i≥1 be a collection of probability
densities on [0, 1].

• Put X1,1 = 1 and sample W1 ∼ ϕ1.

• For n = 1, 2, . . ., given X1, . . . , Xn and
W1, . . . ,WVn

, where Vn is the largest ver-
tex label assigned so far, choose next vertex
Xn+1,k (k = 1, 2) by

pr(Xn+1,k = r |W1, . . . ,WVn
) =

=

{
Wr, r = 1, . . . , Vn,

1−
∑Vn

j=1Wj , r = Vn + 1.

• IfXn+1,k = Vn+1, then we chooseWVn+1 ∼
ϕn+1(·/(1−

∑Vn

j=1Wj)).

Corollary 5: Hollywood model with parameter
(α, θ) corresponds to (2) with W from Poisson–
Dirichlet(α, θ).
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