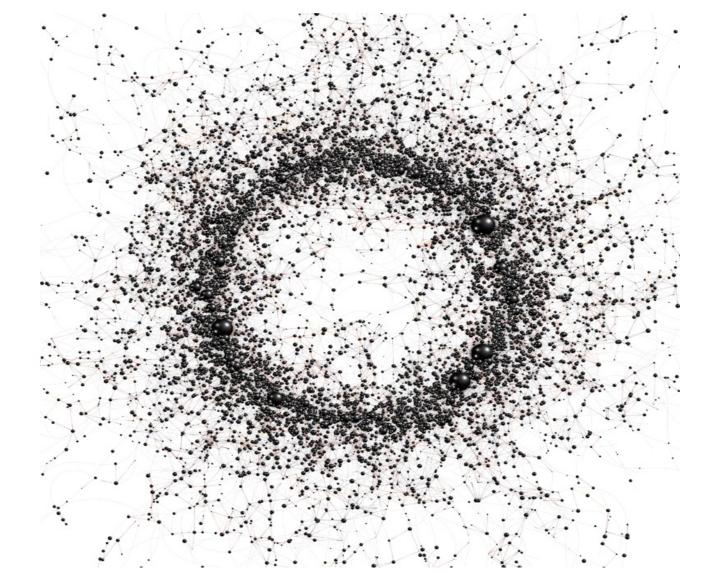
ECE ILLINOIS

Efficient Information Spread Control in Cyber-Physical Systems

Ali Khanafer and Tamer Başar Coordinated Science Laboratory, ECE, University of Illinois at Urbana-Chamapign

Networks in CPS

- Reliable networks are vital for information exchange among system components
- Future generation networks will comprise millions of users and connections
 Efficient information propagation affects many networked systems
 Directing traffic
 Quarantining patches in networks
 Regulating spam and rumor spread



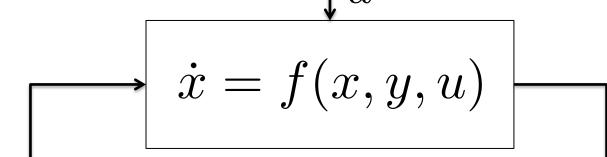
Low Cost Network Curing

Theorem

Stabilization achieved by placing controls so that no path exists between two uncontrolled nodes

Goal I: Controllability via Limited Control

- Information spread control schemes must be scalable
- Common theme: control every node infeasible and expensive
- Two fundamental questions
 - Q1: What is the minimum number of controllers required?
 - Q2: Which nodes should be controlled?
- Approach: Exploit advances in classification algorithms to employ feedback control theory



(www.complexification.net)

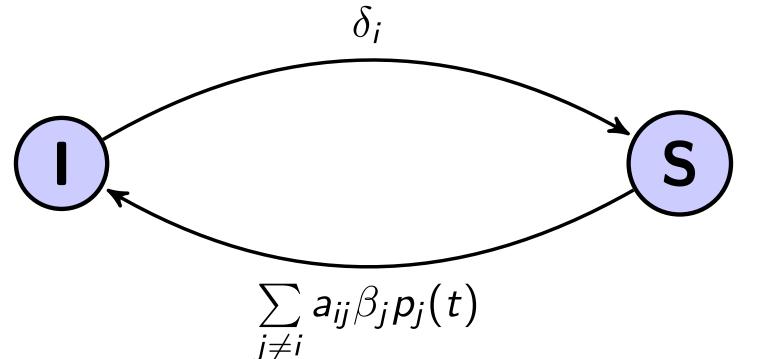
• Implication on required number of control nodes: Star: 1; Path: n/2; Binary Tree: $\frac{1}{3}(2^{\ell}-1), \ell > 2$ (even)

Goal II: Robust Distributed Controllers

- Achieve global objectives with limited information about the network
- Objective: implement distributed controllers that are
 - Feature 1: Robust to adversarial intervention
 - Feature 2: Robust to large modeling uncertainties
- Approach: Use a game-theoretic framework which allows for

Proof of Concept: Virus Spread Control

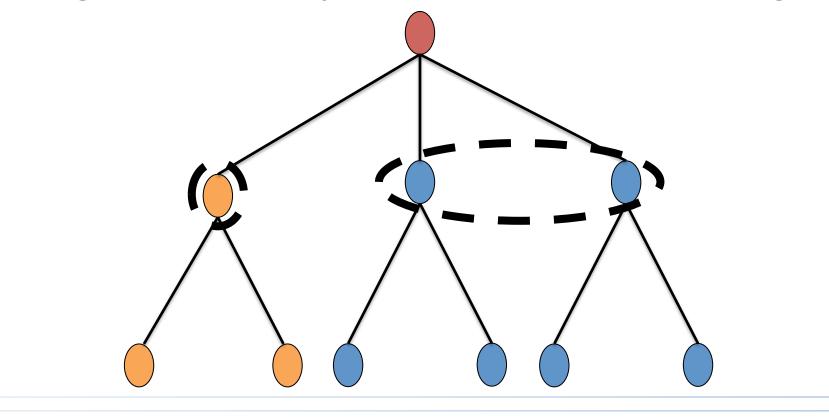
- Two states per node: healthy or infected
- Curing: $Poi(\delta_i)$; Infection: $Poi(\beta_i)$



• Prob. of infection: $p_i(t) \in [0, 1]$. Graph adjacency matrix: A

 $\dot{p}(t) = (AB - D - U(t))p(t) - P(t)ABp(t)$ $D = \operatorname{diag}(\delta_1, \dots, \delta_n), \quad B = \operatorname{diag}(\beta_1, \dots, \beta_n)$ $P = \operatorname{diag}(p_1, \dots, p_n), \quad U = \operatorname{diag}(u_1, \dots, u_n)$

various models of agents and yields robust strategies



Proof of Concept: Robust Multi-Agent Systems

- Centralized worst-case attack to disrupt distributed computation
- Adversary is allowed to break a subset of the links

 $\max_{u \in \mathcal{U}} \int_{0}^{1} k(t) |x - \overline{x}|^{2} dt$ subject to $\dot{x} = A(u)x, \quad x(0) = x_{0}$ $||u(t)||_{1} \leq \ell$

Theorem

The optimal strategy at time t is to break ℓ links with maximum

