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Networks in CPS 
•  Reliable networks are vital  
    for information exchange  
    among system components 
•  Future generation networks  
    will comprise millions of users 
    and connections 
•  Efficient information propagation 
    affects many networked systems 

•  Directing traffic 
•  Quarantining patches in networks 
•  Regulating spam and rumor spread 

(www.complexification.net) 

Proof of Concept: Virus Spread Control 
•  Two states per node: healthy or infected 
•  Curing:            ; Infection:   

 
 
 
•  Prob. of infection:                 . Graph adjacency matrix:  

 
•  Control curing rates of a limited subset of nodes; uncontrolled 

nodes depend on their arbitrarily small immunity 
 
 

Low Cost Network Curing 
 
 
 
 
 
 

•  Implication on required number of control nodes: 

Goal I: Controllability via Limited Control 
•  Information spread control schemes must be scalable 
•  Common theme: control every node – infeasible and expensive 
•  Two fundamental questions 

•  Q1: What is the minimum number of controllers required? 
•  Q2: Which nodes should be controlled? 

•  Approach: Exploit advances in classification algorithms to employ 
feedback control theory 

 

ẋ = f(x, y, u)

ẏ = g(y, x, v)
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Fig. 4: A star graph with Sontag’s universal controller
implemented at the root. n = 10.

show that p

? is GAS. Finally, we proposed a method that
allows for stabilizing the state to the origin using a limited
number of controllers.

Future work will focus on the formulation of various
optimal control problems in terms of curing rates, under-
standing the stability properties of directed graphs, further
investigation of the fundamental limitations to stabilizability
of infected networks, and studying decentralized control
designs.
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Theorem 
Stabilization achieved by placing controls so that no path exists 
between two uncontrolled nodes 

Goal II: Robust Distributed Controllers 
•  Achieve global objectives with limited information about the network 
•  Objective: implement distributed controllers that are 

•  Feature 1: Robust to adversarial intervention 
•  Feature 2: Robust to large modeling uncertainties 

•  Approach: Use a game-theoretic framework which allows for 
various models of agents and yields robust strategies 

 
 
 
 
 
 

Proof of Concept: Robust Multi-Agent Systems 
•  Centralized worst-case attack to disrupt distributed computation 
•  Adversary is allowed to break a subset of the links 

•  Implication: Optimal attack depends on local quantities 
•  Distributed defense mechanisms can be effective 
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Theorem 
The optimal strategy at time   is to 
break    links with maximum 
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Virus Spread Control Virus Spread as a Concave Game

n-Intertwined Model [Van Mieghem,Omic,Kooij’09]

Each node associated with a 2-state Markov chain: infected or cured
Let pi (t) 2 [0, 1] be the infection probability of node i
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Let p = [p1, . . . , pn]T , P = diag(p1, . . . , pn), D = diag(�1, . . . , �n),
and B = diag(�1, . . . , �n)

ṗ(t) = (AB � D)p(t)� P(t)ABp(t).

Can have multiple equilibria
Exp convergence to all-healthy state: �1(AB � D) < 0
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ṗ(t) = (AB �D � U(t))p(t)� P (t)ABp(t)

D = diag(�1, . . . , �n), B = diag(�1, . . . ,�n)

P = diag(p1, . . . , pn), U = diag(u1, . . . , un)

�i = ✏ () ui = 0

�i = 0 () ui > 0

Star: 1; Path: n/2; Binary Tree: 1
3 (2

` � 1), ` > 2 (even)


