Encryptor Combiners

-PI: Mark Zhandry – Princeton University

Introduction

But...

Obfuscation is unnecessarily powerful for most applications

Applications extremely impractical

Obfuscation rests on new, unvetted security assumptions

Tenuous security for applications

Techniques can be very cumbersome

Hard to re-use for other applications

High Level Approach

Terminology

Encryptor: c ← E(m) (randomized)

Decryptor: m ← D(c) (deterministic)

D is valid for E if, for any m, Pr[D(E(m))=m] > 1 - negl

Ex: PKE: E(m) = Enc(pk,m), D(c) = Dec(sk,c)IBE: $E_{id}(m) = Enc(mpk,id,m)$, $D_{id}(c) = Dec(sk_{id},c)$

New Tool: Encryptor Combiners

Correctness: D_i valid for $E_i \Rightarrow D^*$ valid for E^*

Security: If adversary can decrypt **E***,

then it can decrypt at least one $\mathbf{E_i}$

Variants:

Unbounded vs Bounded n
Unique D* vs Many D*

•Compact |ctxt| vs |ctxt| grows with n

Results Multiparty NIKE Techniques from [DJKSWZ' 16,GPSZ' 16] [GPSZ' 16] (unbounded, unique, succinct) Encryptor (IB)BE Obfuscation Combiners (H)IBE Specialized ECs **LWE** for Dual Regev Encryption Techniques from [CHKP' 10]

Master public key mpk key msk $E_{1,0} \quad E_{2,0} \quad E_{3,0} \quad E_{4,0} \quad E_{5,0} \quad D_{1,0}$

Example: Identity-based Encryption

Interested in meeting the PIs? Attach post-it note below!

•New way to view existing applications of obfuscation, LWE

•Our LWE-based (H)IBE scheme is reminiscent of early schemes [CHKP' 10]

•Identify concrete features needed from LWE to obtain BE (compactness) and multiparty NIKE (uniqueness)

