

Terminology

Encryptor: $c \leftarrow E(m) \quad$ (randomized)
Decryptor: $m \leftarrow D(c) \quad$ (deterministic)
D is valid for E if, for any m,

$$
\operatorname{Pr}[D(E(m))=m]>1-n e g l
$$

Ex: $\operatorname{PKE}: E(m)=E n c(p k, m), D(c)=\operatorname{Dec}(s k, c)$
IBE: $E_{i d}(m)=E n c(m p k, i d, m), D_{i d}(c)=\operatorname{Dec}\left(s k_{i d}, c\right)$

But...

Obfuscation is unnecessarily powerful for most applications

Obfuscation rests on new, unvetted security assumptions

Techniques can be very cumbersome

Applications extremely impractical

Tenuous security for applications

Hard to re-use for other applications

New Tool: Encryptor Combiners

Correctness: D_{i} valid for $E_{i} \Rightarrow D^{*}$ valid for E^{*}
Security: If adversary can decrypt E^{*}, then it can decrypt at least one $\mathbf{E}_{\mathbf{i}}$

Variants:
-Unbounded vs Bounded n
-Unique $D^{*} \quad$ vs Many D^{*}
-Compact |ctxt| vs |ctxt| grows with n

Example: Identity-based Encryption

[^0]
[^0]: Interested in meeting the PIs? Attach post-it note below!

