European Systems related R&D

An overview and outlook: "Computing, Embedded, Control and Cyber-Physical Systems"

Workshop "Control for Cyber-Physical Systems" London UK, October 20-21, 2012

Dr.-Ing. Alkis Konstantellos
European Commission, Brussels
Directorate General CONNECT,
Unit A3: Complex Systems and Advanced Computing
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/home_en.html

E-mail: Alkis.Konstantellos@ec.europa.eu

Disclaimer

• The information in this paper reflects the views of the author and not necessarily those of the European Commission on this subject.

Content

- 1. "Systems R&D" evolution in EU public R&D programmes
- 2. Embedded Systems, Control and SoS in FP7 (2007-2013)
- 3. CPS towards H2020
- 4. Remarks on Control
- Information Sources and References

EC CONNECT Directorate General

(since July 1st 2012; previously ICT)

- Director General: Robert Madelin
- Directorate A: Components and Systems

Director: Khalil Rouhana

Unit A3: Complex systems & Advanced computing

(since July 1, 2012; previously *Embedded systems and Control*)

Rainer Zimmermann (Head), Max Lemke (Deputy), Ioannis Bitsios Francesca Flamigni, Erastos Filos, Alkis Konstantellos, Markus Korn, Zulema Olivan-Thomas, Rolf Riemenschneider, Danuta Seredynska, Werner Steinhoegl, Panos Tsarchopoulos,

Evolution of the "embedded and control" systems domain in Europe (EC)

- Open Microprocessor Systems (OMI), (1996) (*)
- Embedded Systems (2000) New Unit "EMS"
- Networked Embedded Systems (2004)
- Embedded Computing , ARTEMIS, SRA-1, (2006)
- Networked Embedded & Control Systems, incl. WSN (2007)- New unit "EMS & Control"
- Systems of Systems, SoS Engineering (2009)
- Embedded Computing, ARTEMIS JU (SRA-2, 2011)
 - -New unit: "Complex Systems & Advanced Computing" (7/2012)
- Under consideration: CPS (for Horizon 2020), see discussion in this presentation ->

The last calls for proposals in FP7/ICT

! Check call text (description of Objectives, Evaluation Criteria and Deadlines) in: http://cordis.europa.eu/fp7/ict/docs/ict-wp2013-10-7-2013.pdf

(FP 7)

2012

2013

H2020 (2014-2020) preparation

Some systems related objectives (simplified)!:

- Computing, data centers
- Mixed criticality systems (embedded)
- (Control of) Systems of Systems
- Synergies between embedded and HP Computing
- Future Internet
- Robotics and cognitive systems (Jan 15, 2013)
- Advanced manufacturing-FoF (Dec 4 ,2012)
- EU Brazil in "embedded and control" (Dec 12, 2012)

parts of ICT 2013 Objective 3.4, Budget 72 Mi Euro, Deadline Jan. 15, 2013 (see Cordis)

ICT call for proposals in Systems of Systems

The ICT Work Programme (WP) 2013 call for proposals includes a topic in SoS under objective 3.4

See detailed call text and associated "impacts" on the web

Call coordinator:
Dr Werner Steinhoegl
CONNECT A3

www.cordis.europa.eu/fp7/ict/docs/draft-wp2013.doc

Objective ICT-2013.3.4
Advanced computing, embedded and control systems

Part d):

From analysing to controlling behaviour of Systems of Systems (SoS)

Systems of Systems and SoS(E)ngineering

Some Beneral challenges for applications.

- 1. Real time, dependability and control for SoS(E)
- 2. M.Maier criteria and DoDAF/MoDAF (***)
- 3. Modeling and simulation for SoS
- 4. Standards/standardization efforts
 (e.g. IEEE P2030 /smart grid, March 2012, includes some SoS concepts, <>)

Sources:

- (*) SAAB Security Systems, Brussels meeting 2012
- (**) IOOS Observatory system, 2011
- (***) MITRE Corporation(USA), DoD(US), MoD (UK) Architectural Framework
- (<>) IEEE P2030: http://grouper.ieee.org/groups/scc21/2030/2030 index.htm

Various aspects of SoS(E)

Mark Maier

Eberhard Rechtin

Nino Boccara

Hermann Kopetz 2nd ed. 2012

Mo Jamshisi

Mo Jamshidi

SE= Systems Engineering

Dominique Luzeaux

P.Ioannou & A. Pitsillides

deling and

Control of

Complex

Systems

European CPS related activities and initiatives (examples)

- German Government CPS initiative & Roadmap (Acatech = Academy of Science and Engineering)
- University level CPS R&D (e.g. Germany, Austria, Denmark)
- ERC (European Research Council): CPS call (2012)
- EIT ICT Labs (EIT = European Institute of Innovation and Technology) established a CPS area (2011)
- ERCIM/ SAFEPROCESS CPS initiatives
- Marie Curie CPS fellowships (2012)
- ARTEMIS CPS related topics & projects (SRA-2)

A partial view of **Systems** for easy classification

Scale and Classes (Complexity I)

(and Topo-

(Complexity II)

logy)

Behavior (and Dynamics)

(Complexity III)

Boundaries are blurring

System scale/classes: Global systems Federated systems Systems of Systems Ultra Large scale Large scale systems Systems Sub-systems Micro/Nano

Boundaries rather distinct

Societal relevant Sectors/Domains:

Energy
Health Care
Environment
Manufacturing
Transportation
Telecommunications
Media
Construction

... Education E-Gov Banking

Scientific, or intuitive classification.
Physical and most of them with
ICT-based Engineered systems

The related economies, Capital Equipment, Systems, Infrastructures Workforce, Society,

classes Global sy Federated s Systems of Sy Ultra Large Large scale Systems Sub-systems Microsystems Micro/Nano Boundaries are blurring

R&D and Industry

Sciences, **Technologies** and Engineering necessary to model, compute, analyze, control understand, simulate, design and build: Components, Sensors-Actuators, Controls, Observers, Optimizers Networks. Devices, Electronics, Chips/Computers, x-Systems

Societal relevant
Sectors/Domains:

Energy
Health Care
Environment
Manufacturing
Transportation
Telecommunications
Media
Construction

Education E-Gov Banking

Boundaries rather distinct

Converging to a "post-embedded systems" topic

Notes: Introduced and promoted mainly by: (1) NSF / ICT, (2) ICT, (3) Carnegie Mellon/SEI, (4) Sandia Labs, (5) NSF, (6) DoD(US)/MoD (UK), DGA(FR) and ICT(EU, 2009), (7) IBM

Horizon2020 (2014-2020) Preliminary Information

H2020 main directions

Societal Challenges

- Single program for the EC, EU27+
- Proposed funding: 80 Bi Euro/ 7 years, subject to approval (expected by end of 2012)
- To embrace R&D and Innovation actions
- H2020 content to be finalized in 2013
- Contractual facilitation for SMEs
- First calls for proposals expected early 2014

CPS, or *CPS Topic under consideration for the ICT part of of the forthcoming EU Horizon 2020 Programme

*CPS = advanced /networked/smart CPS extending and unifying technologies and communities

Drivers and enablers for CPS

- Energy
- Transportation
- Environment
- Health
- Dependability of systems
- Social and business networking and connectivity
- Innovation imperatives, competitiveness
- Other societal challenges and cost of living
- New world economic models
- other
- Ref: Prof Manfred Broy: "Engineering Cyber-Physical Systems" Lecture, Brussels, Oct 11, 2012
 - NSF CPS 3rd Annual PI meeting , Research Agenda and international cooperation panels, National Harbor MD(USA), October 5, 2012 and previous work (see CPS V-O)
 - Internal discussion papers, Computing, Systems of Systems, and CPS, DG CONNECT, EC, Brussels, Sept-Oct 2012
 - Competitiveness week, Brussels Oct 2012 (see Ref. in Sect. 5)

- Advanced and low cost chips
- Computing, simulation tools
- New s/w & middleware
- Agent-based Architectures
- Novel sensors
- Robust /Efficient actuators
- Advanced controls (self*, robust)
- Dependable industrial networks
- Future Internet/Mobile nets
- HMI for all
- (e) Infrastructures
- other

Example 1: New Energy needs strong CPS

(*) and advances from Electrical Engineering (generators, transformers), wind turbine construction, blade shape & material, measurements, control and optimization, tools for design, options exploration.

Example 2: CPS for designing, orchestrating, managing and executing very "complex " engineering systems, or projects

Source: (top: BOA, London 2012), (bottom: NASA and NOAA)

Example 3:The beauty of discontinuous systems and "switched-type " control for CPS

EC funding

- Hybrid systems ,Control, LMIs
- Non-smooth systems
- Computational models
- Decision making support

Classic controllers switching

Institute of Signaling, Developmental Biology and Cancer Research, University of Nice, FR

Switching in Biology systems

Batch & sequential Control

Source: Hans-Henrik Hvolby: Computers in industry, Dec 2010, Aalborg university

Switching in strategies and Business systems integration

A= (p+n)+ |p-n|/2 Griffin (1995)

Psychology: non-smooth metric in evaluating "ambivalence" attitudes

For discussion

The computing continuum meets the systems continuum (partially bi-directional) (1)

Customization,
Applications,
Sectors,
Societal
Challenges,
Economy,
Growth,
Failures,
Concerns

Systems: Modeling, **Architectures** & Platforms. Design, Simulation. Instrumentation, Control. cognition **Optimization** Networking, Internet, dependability Integration, **Management** ,Protection, Maintenance

Computing: Embedded and general purpose chips & s/w e.g. FPGAs, DSPs ASICS, GPUs; mutli-processors,..., multi/many cores, memories; high performance, virtualization,...; system architectures, RTOS; fault tolerance big data; cloud,...

(2)

For discussion

In summary: A European Concept for *CPS (preliminary considerations)

*CPS science, technologies and engineering with underpinning areas e.g. networked embedded systems, advanced control systems, cognition, computing, simulation, smart spaces

Addressing special system classes, e.g. System of systems, large scale/complex systems

Optimizing h/w and s/w resources e.g. Mixed criticality systems

Generic Support for key EU sectors e.g. Integrated Manufacturing

Initial Focus 2012/13

tbd for H2020

Other themes and areas under consideration/discussion for H2020 (*)

(based on on-going internal CONNECT and external discussions)

- Bridging the gap between <Embedded> and <HPC>
- Cognitive Control: synergies between <control> and <cognition>
- Hardware-Software-System co-design and cross-layer optimization
- Scalable MPC with concurrent Real-Time Optimization
- Coordinated control for networked dynamic systems
- Verification of distributed, multi/many core systems

Control in the EC Programmes

4

Control is included for example in:

- several objectives of the ICT programme, e.g. *Embedded systems & control*, Cognitive systems & Robotics, Energy efficiency, Transportation/Electro-mobility, Manufacturing,
- other non-ICT oriented EC programmes, such as NMP (e.g. adaptive production), Aeronautics, and Energy,
- Joint Undertakings e.g. SESAR (Air traffic), CLEAN SKY, ARTEMIS (Embedded computing) and H2 (Fuel cells)

At EC level:

Networking activities and Summer Schools by the Network of

Excellence HYCON2 (2010-2014) and

the BALCON project

(for the Western Balkan Countries, 2011-2013)

And 20+ funded ICT projects

Concerning the Systems and Control community, during the past 5-6 years:

- delivered new software tools and open source software,
- increased the volume of very good papers and books,
- achieved further acceptance and recognition by industry
- increased the industry-academia cooperation
- contributed to solving challenging engineering problems

Control as science, technology and engineering, but is only about 5-20% of total engineering

Based on EC/ICT experiences and some personal views (2000-2012)

- 1. Cooperation with other communities
- 2. Continue rigorous R&D
 - Deal with novel topics
- 3. Exploit mature control methods and tools
- 4. Disseminate broadly

Windscanners in operation measuring the wind and turbulence properties around the huge Wind Turbine's at the Danish test site for large wind turbine's at Hovsøre, Denmark

1. Cooperation with other communities for synergies:

- Control- CPS: new
- control-sensing/wsn
- control -cognition,
- control-optimization,
- control-electronics
- control- computing,
- control-software
- control-complexity/management
- control- systems engineering
- control-internet and cloud.

2. A futuristic example: Moving platforms concept for non-stop rail-based transportation

Only possible if the trains travel in the same direction for some time!

Enormous challenge to build such coordinated/synchronized and reliable systems!

3. Exploit and commercialize mature advanced control methods

(e.g. MPC, distr. LQG/R, LMI, H_{∞} , RT-optimization, multi-body dynamics models and control):

- Design methods and tools (from universities to industry and society)
- Create a "CATIA-type" modeling and design environment for control(?)
 (a kind of "SUPER" MATLAB/SIMULINK)
- Knowledge transfer across domains e.g.
 process control to automotive and viceversa, automotive to aerospace!

From a smart tool -> to the market /product!

4. Disseminate broadly

- Success stories mainly when control/CPS is the only, or the main contributor to a method or solution
- Beyond the "standard" publications and dissemination channels of the established control communities
- Increase community presence in events of the neighboring disciplines (e.g. plenaries, publications)

How about a follow up of the IEEE CSS IoC Report (2011)?

Concluding thoughts

Synergies between CPS and Control are promising:

- The EC is expected to embrace *CPS in H2020 aiming at innovations beyond "Networked Embedded & Control Systems".
- It is the right time (now in 2012) for S&T reports, market data, foresights, industry position papers and ideas for H2020 topics.

CPS challenges and expected impacts: S&T&E e.g.

- Scalability/performance of architectures and V&V&T for distributed,
 networked and many/multi-core systems in conjunction with control (co-)design
- Ultra Fault Tolerant & Optimizing Real-Time Control addressing fault detection and recovery from "silicon" to high level
- Demonstrate benefits for industry and society within the next decade
- **Education:** Are we reaching a "saturation" of scientific efforts? Need to motivate the younger generations into the systems fields (starting at high school level! in all countries and regions.)

Concluding thoughts

Synergies between CPS and Control are promising:

- The EC is expected to embrace Advanced/* CPS in H2020 aiming at innovations beyond "Networked Embedded & Control Systems".
- It is the right time (now in 2012) for S&T reports, market data, foresights, industry position papers and ideas for H2020 topics.

CPS challenges and expected impacts: S&T&E e.g.

- Scalability/performance of architectures and V&V&T for distributed, networked and many/multi-core systems in conjunction with control (co-)design
- Ultra Fault Tolerant & Optimizing Real-Time Control addressing fault detection and recovery from "silicon" to high level
- Demonstrate benefits for industry and society within the next decade
- **Education:** Are we reaching a "saturation" of scientific efforts? Need to motivate the younger generations into the systems fields (starting at high school level! in all countries and regions.)

Useful Links and references

- ARTEMIS: <u>www.artemis-ju.eu</u>
 http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/documents/artemis-sra-2011.pdf
- ERC: http://erc.europa.eu
- EIT: http://eit.europa.eu, www.eitictlabs.eu
- EC, SoS reports, 2009 and 2012

ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/esd/workshop-report-v1-0_en.pdf
http://cordis.europa.eu/fp7/ict/embedded-systems- engineering/home_en.html

- EC MCS (Mixed Criticality Systems) new report 2012 in cordis
- EC Software for Advanced Computing Systems, Oct.2012 see cordis

http://cordis.europa.eu/fp7/ict/computing/documents/advanced_computing_ws_report.pdf

- EU Networks of Excellence (HYCON, HIPEAC, CONNET) and BALCON
- German CPS study "Integrated Research Cyber-Physical-Systems"
 www.acatech.de and workshop Berlin, 12 April 2012

http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Cyber-Physical-Systems/acatech_Agenda_CPS_20120410.pdf

- Prof. Shinji Hara: "Future Visions in Control", IFAC Japan Brochure, August 2011
 http://www.cyb.ipc.i.u-tokyo.ac.jp/files/FutureVision_JapanNMO.pdf
- IMO = International mathematical Olympiad for high schools: http://www.imo-official.org/general.aspx

Information portals about EU R&D and Innovation

More information:

- cordis.europa.eu/fp7/ict/computing/
- cordis.europa.eu/fp7/ict/embedded-systems-engineering
- > www.ec.europa.eu/research/horizon2020
- www.artemis-ju.eu

http://ec.europa.eu/information society/digit al-agenda/actions/competitivenessweek/index en.htm

http://www.knowledge4innovation.eu/EIS/Site Pages/eis2012 Programme.aspx Thank you for your attention!