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Motivation and Background

Modern automobiles include an extensive amount of discrete logic, implemented in software,
that is needed to control and safeguard various aspects of a vehicle’s operation: braking
systems, steering systems, occupant safety systems, etc. As the complexity and coupling
of these automotive control systems increase, traditional industrial practices have become
insufficient to produce the necessary performance and reliability. Currently, most discrete
logic design is performed heuristically in a decentralized manner. Problems that arise due to
system interactions are generally identified during vehicle-level simulation, or worse, during
tests on actual vehicles. At this point, debugging an underlying flaw is much more difficult
and the resulting fix is generally more complicated and expensive to implement. It is even
possible that a fault due to system interaction could fail to be identified during the develop-
ment phase altogether. No amount of testing or simulation can guarantee that all possible
permutations of software execution will be evaluated.

In recent years, considerable advances have taken place in computer science and in con-
trol engineering for the development of techniques for the verification and synthesis of given
discrete-logic systems. In computer science, research on formal verification and model check-
ing of software1 has matured and has begun to allow increasingly complex software programs
to be automatically verified with respect to a given specification. These techniques can be
employed to verify the correctness of discrete control logic, but manual intervention is still
needed to debug and modify the software when it fails the correctness test. In parallel, in
control engineering, theory has been developed that not only verifies the correctness of dis-
crete control logic, but is also able to automatically synthesize additional control logic which,
when coupled with the original logic, leads to behavior that is provably correct with respect
to a given specification. This body of work is often referred to as Discrete-event Control
Theory, abbreviated as DCT hereafter. In the context of this type of discrete-event control,
correctness means that the resulting controlled system is safe and nonblocking. Safety means
that the controlled system does not execute any behavior not allowed by a given specifica-
tion (e.g., avoidance of illegal states), and nonblockingness means that the system can always
reach a “goal” state. For instance, a safety property could be: “do not deploy an airbag
if the output of a weight sensor is within some range that indicates a child is in the seat.”
The property of nonblockingness is especially important when studying a set of interacting

1E. Clarke, O. Grumberg, and D. Peled, Model Checking, The MIT Press, 2001.

1



systems; each system may perform satisfactorily in isolation, but unexpected interactions
may occur when the systems are coupled: the two classical problems are deadlock (i.e., no
further progress is made) and livelock (i.e., the tasks at hand cannot be completed). As
an example of how interaction could lead to deadlock, consider a central door lock system.
This system interacts with many other systems and their interaction could lead a window
to be stuck open with the system deadlocked in an unanticipated state with no control logic
existing that would allow the window to reach the goal state of being closed.

DCT is a relatively new area of control engineering2 that is finding its way into applica-
tions. It has been used for instance in automated manufacturing applications, and recently
for failure avoidance in concurrent software applications.3 A promising research agenda is
to build on this recent work on general-purpose concurrent software and use DCT to tackle
the verification and synthesis of control software in automotive applications.

Proposed Research Agenda

Given a formal model of the set of systems and of the specifications, DCT techniques can
be employed to verify if the interacting systems behave according to the specifications and,
if not, to synthesize algorithmically a “controller” (i.e., additional control logic), so that
the “closed-loop” controlled system is provably correct with respect to the specifications.
Solid theoretical results and associated algorithmic techniques are available in this regard.
At Michigan, we have developed a software tool called DESUMA that implements many of
these algorithms.

The two primary obstacles to application of this theory are the lack of existing models
and possibly the complexity of the control logic. Like other theories in control engineering,
DCT is model-based. The algorithmic techniques for controller synthesis in DCT require
formal models of the set of interacting systems (aka the “plant” in control engineering terms)
and of the specifications to be enforced (e.g., illegal states). In the automotive industry it is
generally the case that models of the specifications do exist, just not in the form commonly
employed by existing DCT techniques. Specifically, automotive specifications are given in
the form of if-then-else statements, tables, and natural language descriptions, while most
academic theory requires models in the form of automata (finite-state machines), Petri nets,
or process algebras. Therefore, algorithms must be developed to convert those specification
models used in the automotive industry into the modeling formalisms used in DCT. On the
other hand, discrete models of the plant (i.e., the set of interacting systems) often do not exist
at all. Such modeling is a challenging task; deep designer understanding of the whole system
is necessary to develop the required discrete models for the constituent systems. Based on
our experience on control of software for deadlock avoidance, we envisage an approach where
system models are constructed from the existing, possibly unverified and incomplete, discrete
control logic modules themselves. In other words, the “plant” would be the unverified and/or

2C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, 2nd. Ed., Spinger, 2008.
3T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke, “Eliminating Concurrency Bugs with Control Engi-

neering,” IEEE Computer, Cover feature, December 2009.
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incomplete discrete control logic, and the goal of controller design would be to synthesize
additional control logic that will guarantee that the complete set of interacting systems
satisfies the given specification. A key issue here is the level of abstraction to be used in the
construction of these models; this has to be attuned to the specification under consideration.
The desired formal models must capture the relevant interactions of the systems so that the
global safety and nonblocking properties are satisfied by control.

The second challenge that arises is the large amount of computation that may be re-
quired for the verification and synthesis of the control logic for a system as complex as a
modern automobile. This complexity arises from the concurrent operation of so many in-
teracting subsystems. For example, an automotive braking system could require mediation
of commands from a range of different safety systems, like adaptive cruise control, stability
control, and rollover prevention, as well as from the energy management system in the case
of a system with regenerative braking. This complexity motivates the need for formal tech-
niques, but also demonstrates the computational challenge. Techniques that mitigate this
complexity by designing the control logic in a modular or hierarchical manner have been
developed4 and could be advanced for the purposes of application to automotive systems.
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