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Power Systems Are Large-Scale, Multi-Layer, Multi-Rate,
Cyber-Physical Networks

Complex intra-layer and cross-layer interactions pose challenges for analysis/design

Introduction of new feedback loops can help mitigate some disturbances but can also
lead to new fragilities

Supply volatility will increase, leading to rapidly varying system configurations,
undermining system reliability

Price volatility may increase or lead to demand volatility, undermining system reliability
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F1GURE 2. Examples of prices in the electric power industry.

This project addresses the impact of the integration of renewable intermittent
generation and the integration of sophisticated sensing, communication, and
actuation capabilities into the grid on the system’s reliability, volatility, and
economic efficiency, and seeks to develop system architectures, along with
associated optimization and control algorithms to balance such trade-offs.

 --Understand the trade-offs
« -- Achieve robustness and efficiency under normal operation
« -- Reconfigure to mitigate fragility/risk upon approaching a state of failure

Efficiency and Risk Trade-offs in Electricity Markets with
Dynamic Demand Response
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« Decision making in multi-agent systems:

Well-known: strategic complementarity leads to efficiency loss
-- In an uncertain environment: efficiency ~ absorbing exogenous shocks
Multi agent collaboration can reduce externality,

-- but also create endogenous risks
-- System can become more vulnerable to severe exogenous shocks

* In smart grid, real time electricity pricing and consumer side
load shifting may help absorb supply / demand uncertainties.

« Consumer interaction may translate exogenous uncertainties
to endogenous risk.
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Volatility and Improving Operational Reliability
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Load-shifting Model Setup

Agent arrival: t

* L types (deadline constraint)
* Uncertainty

- Bernoulli arrival L t+1
- Workload distribution
wi(t),le{l,...,L}
t+2

« Marginal cost pricing
with quadratic cost
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|
1
t+3
2 ‘

E> wi(t)p(t)]

Decision process and dynamics:
Each agent participates in a finite window
Agent schedules demand to minimize his expected total payment
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Robustness-Risk Trade-offs in Energy Markets with
Cooperative Storage and Renewable Generation

Intermittent

» The goal of the coalition is to renewable

minimize the long-term T

expected cost of deviations from T M% Conventional
the promised output (imposed o (slow)

by the 1ISO/regulations). generator

 Also, an abstract model of the

system as a whole fast storage

. virtual power plant
Assumptions:

Perfect prediction, except for supply shocks

The conventional generator is slow

Storage is very fast as a supply source but has upward ramp constraint
The storage has finite capacity

The deviation penalty imposed is a function of total lost energy
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Optimal storage size (s*
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Emerging Risks in Energy Networks:
The risk of cooperation

« The coalition’s strategy for utilizing storage depends on the cost
structure imposed by regulation

« Linear stage cost - myopic policy: Cover every shock up to the
available level of storage

(s, w) = min{s, w}
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Myopic policy
 When the stage cost is

strictly convex, the
myopic policy is not
optimal

Optimal Policy
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Deviation statistics:

Il Optimal policy for cubic stage cost
Il Myopic policy (optimal for linear) | |

©
—
o

—©— Myopic policy
—8B— Optimal policy (g(x) =x3) |[]

o
o
N

=== Optimal policy ( g(x) = x2)

©
—
N

o
-

o

o

Qo
T

o

(@)

[22)
T

r(blackout size > 0.8)

P
©
o
=

0.02

W - -

w
|

Drift = E [WQ] —r, Optimal
sizing at zero drift

n
(&)
!

N
[

—
(3
!

—_
|

054 4

n
[

[

Optimal Storage (s*)

o ©
\/

Attempting to mitigate small defaults increases the probability
of incurring large defaults.

It may be optimal to curtail some of the demand, and allow a
small default in the interest of maintaining a higher level of
reserve, which may help avoiding a large default in the future.

Market mechanism determines the outcome

Optimal sizing depends on the target level of volatility

Architectures for Congestion Control and
Scheduling

communication

We consider a functional decomposition into two layers:
» a congestion control layer

» a scheduling layer

., N, so

The congestion layer computes a set of bounds b;, i = 1,.
that

pel0,bi] x[0,b] x---x[0,by] = vip<ec

I.e., one among the possible box sets that are contained in the
feasible set {p: v p < c}.

by
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~| congestion |- In order to recover the original capacity
 udlary region, the auxiliary constraints need to
by be dynamically adapted.
:I scheduling L demand
pover armivals Key feature for scalability /privacy:
Py Congestion control policy is driven by
Uy the decision p; of the scheduling
modules.
The backlogged demands xlj the

arrivals 2., and the scheduling policies,
are private information.

Under this fluid limit, the total backlogged demand x; = Zsz’l x{
at bus / evolves as

Xi = [i — Pi

and the outcome of the scheduling at bus / becomes

Pi — IC,'(X,', b,) -— min{a‘,-(x,-), b,}

invariant set, v <0
X2

Congestion control law:
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In the proposed layered architecture

» privacy of the scheduling problem of individual users is
preserved

» users deal locally with the complexity of their scalable problem
» grid constraints are disentangled, so that no coordination
among the different schedulers is needed

» modular design: scheduling policies and congestion control
policies can be designed independently, as long as they satisfy
some specifications



