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Cyber-Physical Systems are Compositional 

Compositional Reasoning for CPSs 

We need to reason about a complicated system based on models/behaviors of 
components: 
 
 
 
 
 

•  Can the composed system be analyzed in a rigorous way? 

Algebraic Composition of Transitions Systems 
Famously, Milner [4] devised synchronization trees for labeled transition 
systems (subsequently known as Process Algebra): 

Definition: 

A Synchronization Tree (ST) over a set of labels 𝐿 is a tuple (𝑉,𝐸,ℒ) where: 
-‐  (𝑉,𝐸) is an undirected, connected, acyclic graph (𝑉,𝐸) with a specially 

identified root node 𝑟 and 

-‐  ℒ is a function ℒ:𝐸→𝐿∪{𝜀} 

 

 

 

•  Each path in the tree is an execution of the transition system. 
•  Nondeterminism: multiple children with the same label. 
•  Composition: algebraic operations on synchronization trees 

Generalizing Trees 

•  For example, hybrid powertrains (see e.g. [6]): 

Definition: 
A tree [3] is a partially ordered set (𝑃,≤) with the following two properties: 
1)  There is a 𝑝↓0 ∈𝑃 s.t. 𝑝↓0 ≤𝑝 for all 𝑝∈𝑃.  𝑝↓0  is the root of the tree. 
2)  For each 𝑝∈𝑃, the set {𝑝↑′ ∈𝑃  |   𝑝↑′ ≤𝑝} is linearly ordered by ≤. 

 

 

•  There is a natural partial order for the nodes in a ST. This partial order labels 
each node with the list of its predecessors (on the path connecting it to the 
root); then the nodes are partially ordered according to sequence prefixes. 

Generalized Synchronization Trees (GSTs) 
Definition: 

A Generalized Synchronization Tree (GST) [1] over a set of labels 𝐿 is a tree 
(𝑃,≤) along with a labeling function ℒ:𝑃\{𝑝↓0 }→𝐿. 

•  In a synchronization tree, the nodes form a discrete GST with the canonical 
partial order. 

Research: Composition and Congruence 
Goal: an algebraic theory of composition for CPSs. 
•  Semantically different notions of bisimulation: strong and weak. 

•  Different substitutivity with respect to different notions of bisimulation 
•  Composition Operators on GSTs 

•  CSP parallel composition 
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CSP Parallel Composition 
•  SOS rules for processes 𝑃 and 𝑄 (|𝑆| is a set of labels): 

Definition: 
Let (𝑃,≤) be a partial order. A linearization of (𝑃,≤) is a total order (𝑃, ≤↑′ ) s.t. if 
𝑝↓1 ≤ 𝑝↓2 , then 𝑝↓1 ≤↑′ 𝑝↓2 . 
Definition: 
Let 𝐺↓1 =( 𝑃↓1 , 𝑝↓1 , ≤↓1 , ℒ↓1 ) and 𝐺↓2 =( 𝑃↓2 , 𝑝↓2 , ≤↓2 , ℒ↓2 ) be two GSTs 
with 𝑃↓1 ⋂↑▒𝑃↓2  =∅, and let 𝑇↓1 =( 𝑝↓1 , 𝑝↓1↑′ ] and 𝑇↓2 =( 𝑝↓2 , 𝑝↓2↑′ ] be two 
bounded trajectories. Also, let 𝑆⊆𝐿. A total order (𝑄, ≤↓𝑄 ) is an S-synchronized 
interleaving of 𝑇↓1  and 𝑇↓2  iff there exists a monotonic bijection 𝜆:{𝑝∈ 𝑇↓1 | ℒ↓1 
(𝑝)∈𝑆}→{𝑝∈ 𝑇↓2 | ℒ↓2 (𝑝)∈𝑆} s.t. 

1.   ℒ↓1 (𝑝)= ℒ↓2 (𝜆(𝑝)) for all 𝑝∈ 𝑇↓1  s.t. ℒ↓1 (𝑝)∈𝑆. 
2.   𝑄={𝑝∈ 𝑇↓1 | ℒ↓1 (𝑝)∉𝑆}∪{𝑝∈ 𝑇↓2 | ℒ↓2 (𝑝)∉𝑆}∪{(𝑝,𝜆(𝑝))| ℒ↓1 (𝑝)∈𝑆}. 
3.  Let 𝜋↓1 :𝑄→( 𝑇↓1 ∪ 𝑇↓2 ) where 𝜋↓1 :𝑝↦𝑝 for 𝑝∈ 𝑇↓1 ∪ 𝑇↓2  and 𝜋↓1 :( 𝑝↓1↑′ , 𝑝↓2↑

′ )↦ 𝑝↓1↑′  otherwise, and similarly for 𝜋↓2 . Then 𝜋↓1 (𝑞)≤↓1 𝜋↓1 (𝑞↑′ ) or 𝜋↓2 
(𝑞)≤↓2 𝜋↓2 (𝑞↑′ ) implies 𝑞≤↓𝑄 𝑞↑′ . 

Let 𝐼↓𝑆 ( 𝑇↓1 , 𝑇↓2 ) denote the set of all S-synchronized interleavings of 𝑇↓1  and 
𝑇↓2 . 
Definition: 
Let 𝐺↓1 =( 𝑃↓1 , 𝑝↓1 , ≤↓1 , ℒ↓1 ) and 𝐺↓2 =( 𝑃↓2 , 𝑝↓2 , ≤↓2 , ℒ↓2 ) be two GSTs 
with 𝑃↓1 ⋂↑▒𝑃↓2  =∅. Then the GST 𝐺↓1 |𝑆|𝐺↓2 =(𝑄, 𝑞↓0 , ≤↓𝑄 , ℒ↓𝑄 ) is given 
by: 
1.   𝑄={( 𝑝↓1 , 𝑝↓2 )}∪{𝑇|𝑇∈ 𝐼↓𝑆 (𝑇↓1 , 𝑇↓2 )  for  trajectories  𝑇↓1 =( 𝑝↓1 , 𝑝↓1↑′ ]    

and  𝑇↓1 =( 𝑝↓2 , 𝑝↓2↑′ ]}. 
2.   𝑞≤↓𝑄 𝑞↑′  iff 𝑞=( 𝑝↓1 , 𝑝↓2 ), or 𝑞=(𝑟, ≤↓𝑟 ), 𝑞↑′ =( 𝑟↑′ , ≤↓𝑟↑′  ), and 

 𝑟⊆ 𝑟↑′ ∧(∀(𝑠,𝑡)∈𝑟× 𝑟↑′ ∖𝑟  .    (𝑠,𝑡)∈ ≤↓𝑟↑′  ). 
3.   𝑞↓0 =( 𝑝↓1 , 𝑝↓2 ). 
4.  Let 𝑞∈𝑄 and 𝑝↑′ =sup(𝑞). Then define ℒ↓𝑄 :𝑄→𝐿 such that: ℒ↓𝑄 :𝑞↦ ℒ↓1 ( 𝑝↑

′ ) if 𝑝↑′ ∈ 𝑃↓1 ; ℒ↓𝑄 :𝑞↦ ℒ↓2 ( 𝑝↑′ ) if 𝑝↑′ ∈ 𝑃↓2 ; and ℒ↓𝑄 :𝑞↦ ℒ↓1 ( 𝑝↓1↑′ ) if 
𝑝↑′ =( 𝑝↓1↑′ , 𝑝↓2↑′ ). 

 𝐺↓1 |𝑆|𝐺↓2  is a generalization of the CSP parallel composition operator. 
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CPS Program Information 

(Diagram taken from [6]) 

Weak and Strong Bisimulation 

In the following, let 𝐺↓𝑃 =(𝑃, 
𝑝↓0 , ≤↓𝑃 , ℒ↓𝑃 ) and 
𝐺↓𝑄 =(𝑄, 𝑞↓0 , 
≤↓𝑄 , ℒ↓𝑄 ) be two GSTs. 

Definition: 

A trajectory (of 𝐺↓𝑃 ) starting from 𝑝∈𝑃 and 

ending at 𝑝′∈𝑃 is the set (𝑝, 𝑝↑
′ ]≝{𝑟∈𝑃|𝑝≤𝑟≤𝑝
′}. 

Definition: 

A trajectory (𝑝, 𝑝↑′ ] of 𝐺↓𝑃  is order 

equivalent to a trajectory (𝑞, 𝑞↑′ ] of 𝐺↓𝑄  
if there exists an order preserving bijection λ:(𝑝, 𝑝↑
′ ]→(𝑞, 𝑞↑′ ] s.t. ℒ↓𝑄 
(  λ(𝑟)  )= ℒ↓𝑃 (  𝑟) 

for all 𝑟∈(𝑝, 𝑝↑′ ].  λ is called an order 

equivalence between (𝑝, 𝑝↑′ ] and (𝑞, 
𝑞↑′ ]. 

Definition: 

𝐺↓𝑃  weakly simulates 𝐺↓𝑄  if there is a 

relation 𝑅⊆𝑃  x  𝑄 s.t. ( 𝑝↓0 , 
𝑞↓0 )∈𝑅 and 

•  For any (𝑝,𝑞)∈𝑅 and 𝑞′≥𝑞, 

there exists a 𝑝′≥𝑝 such that (𝑝′,𝑞
′)∈𝑅, and there is an order equivalence between (𝑝, 
𝑝↑′ ] and (𝑞, 𝑞↑′ ]. 

A new, semantically different kind of simulation for GSTs [1]: 

Definition: 

𝐺↓𝑃  strongly simulates 𝐺↓𝑄  if there is a 

relation 𝑅⊆𝑃  x  𝑄 s.t. ( 𝑝↓0 , 
𝑞↓0 )∈𝑅 and 

•  For any (𝑝,𝑞)∈𝑅 and 𝑞′≥𝑞, 

there is a 𝑝′≥𝑝 s.t. (𝑝′,𝑞
′)∈𝑅, and there is an order equivalence λ from 

(𝑝, 𝑝↑′ ] to (𝑞, 𝑞↑′ ] s.t. 

(𝑟,λ(𝑟))∈𝑅 for each 

𝑟∈(𝑝, 𝑝↑′ ].  

 

Proposition: 
If 𝐺↓𝑃  and 𝐺↓𝑄  are STs, then 𝐺↓𝑃  strongly simulates 𝐺↓𝑄  iff it weakly 
simulates 𝐺↓𝑄 . 
Theorem: 
There exist GSTs 𝐺↓𝑃  and 𝐺↓𝑄  such that 𝐺↓𝑃  weakly simulates 𝐺↓𝑄  but 
𝐺↓𝑃  doesn’t strongly simulate 𝐺↓𝑄 . 

Weak and Strong Bisimulation (cont.) 


