James Ferlez[†], Rance Cleaveland[§] and Steve Marcus[†] §Department of Computer Science & †Department of Electrical and Computer Engineering

CPS Program Information

- CPS Breakthrough: Compositional Modeling of Cyber-Physical Systems (*NSF Grant: CNS-1446665*)
- Pls: Rance Cleaveland and Steve Marcus

Cyber-Physical Systems are Compositional

For example, hybrid powertrains (see e.g. [6]):

Compositional Reasoning for CPSs

We need to reason about a complicated system based on models/behaviors of components:

Can the composed system be analyzed in a rigorous way?

Algebraic Composition of Transitions Systems

Famously, Milner [4] devised synchronization trees for labeled transition systems (subsequently known as Process Algebra):

Definition:

- A **Synchronization Tree (ST)** over a set of labels L is a tuple (V, E, \mathcal{L}) where:
- (V,E) is an undirected, connected, acyclic graph (V,E) with a specially identified root node *r* and
- \mathcal{L} is a function $\mathcal{L}: E \to L \cup \{ \varepsilon \}$

Labeled Transition System

- Each path in the tree is an execution of the transition system.
- Nondeterminism: multiple children with the same label.
- Composition: algebraic operations on synchronization trees

Generalized Synchronization Trees

 $C = C_1 \odot C_2$

 $P = P_1 \otimes P_2$

Generalizing Trees

Definition:

A tree [3] is a partially ordered set (P, \leq) with the following two properties: 1) There is a $p \downarrow 0 \in P$ s.t. $p \downarrow 0 \leq p$ for all $p \in P$. $p \downarrow 0$ is the root of the tree. 2) For each $p \in P$, the set $\{p \uparrow e \mid p \uparrow e \mid p \uparrow e \mid p \neq e \}$ is linearly ordered by $\leq P$.

Generalized Synchronization Trees (GSTs)

Definition:

A Generalized Synchronization Tree (GST) [1] over a set of labels L is a tree (P,\leq) along with a labeling function $\mathcal{L}: P \setminus \{p \neq 0\} \rightarrow L$.

In a synchronization tree, the nodes form a discrete GST with the canonical partial order.

Research: Composition and Congruence

Goal: an algebraic theory of composition for CPSs.

- Semantically different notions of bisimulation: strong and weak. Different substitutivity with respect to different notions of bisimulation
- Composition Operators on GSTs
 - CSP parallel composition

Weak and Strong Bisimulation

RSIT

Weak and Strong Bisimulation (cont.)

Proposition:

If $G\downarrow P$ and $G\downarrow Q$ are STs, then $G\downarrow P$ strongly simulates $G\downarrow Q$ iff it weakly simulates $G\downarrow Q$.

Theorem:

There exist GSTs $G\downarrow P$ and $G\downarrow Q$ such that $G\downarrow P$ weakly simulates $G\downarrow Q$ but $G \downarrow P$ doesn't strongly simulate $G \downarrow Q$.

CSP Parallel Composition

- - $P \xrightarrow{a} P' a \notin S$

Definition:

Let (P, \leq) be a partial order. A linearization of (P, \leq) is a total order $(P, \leq \hat{l}')$ s.t. if $p \downarrow 1 \leq p \downarrow 2$, then $p \downarrow 1 \leq 1' p \downarrow 2$.

Definition:

Let $G \downarrow 1 = (P \downarrow 1, p \downarrow 1, \leq \downarrow 1, L \downarrow 1)$ and $G \downarrow 2 = (P \downarrow 2, p \downarrow 2, \leq \downarrow 2, L \downarrow 2)$ be two GSTs with $P\downarrow 1 \cap \mathcal{I} = p\downarrow 2 = \emptyset$, and let $\mathcal{I} \downarrow 1 = (p\downarrow 1, p\downarrow 1 \mathcal{I})$ and $\mathcal{I} \downarrow 2 = (p\downarrow 2, p\downarrow 2 \mathcal{I})$ be two bounded trajectories. Also, let $S \subseteq L$. A total order $(Q, \leq IQ)$ is an **S**-synchronized *interleaving* of $T \downarrow 1$ and $T \downarrow 2$ iff there exists a monotonic bijection λ : { $p \in T \downarrow 1 \mid \mathcal{L} \downarrow 1$ $(p)\in S \rightarrow \{p\in T\downarrow 2 \mid \mathcal{L}\downarrow 2 \ (p)\in S\}$ s.t.

- $(q) \leq 12 \pi 12 (q^{\uparrow})$ implies $q \leq 10 q^{\uparrow}$.

 $T\downarrow 2$.

Definition:

Let $G\downarrow 1 = (P\downarrow 1, p\downarrow 1, \leq \downarrow 1, f\downarrow 1)$ and $G\downarrow 2 = (P\downarrow 2, p\downarrow 2, \leq \downarrow 2, f\downarrow 2)$ be two GSTs with $P\downarrow1$ $\hat{D}\uparrow = \hat{Q}$. Then the GST $G\downarrow1$ $\hat{S}/G\downarrow2 = (Q,q\downarrow0, \leq \downarrow \hat{Q}, \pounds \downarrow \hat{Q})$ is given

- and $T \downarrow 1 = (p \downarrow 2, p \downarrow 2, 1')$.
- 2. $q \leq \downarrow Q q \uparrow'$ iff $q = (p \downarrow 1, p \downarrow 2)$, or $q = (r, \leq \downarrow r), q \uparrow' = (r \uparrow', \leq \downarrow r \uparrow')$, and $r \subseteq r \uparrow' \land (\forall (s,t) \in r \times r \uparrow' \setminus r. (s,t) \in \leq \downarrow r \uparrow')$.
- $q \downarrow 0 = (p \downarrow 1, p \downarrow 2).$
- $p \mathcal{T} = (p \mathcal{I} \mathcal{T}, p \mathcal{I} \mathcal{I}).$

 $G\downarrow 1 |S|G\downarrow 2$ is a generalization of the CSP parallel composition operator.

References

- 2014. Springer-Verlag.
- [3] T. Jech. Set Theory. Academic Press, 1978.
- [5] Aarhus, Denmark.
- December 2007.

SOS rules for processes *P* and Q(|S|) is a set of labels):

 $Q \xrightarrow{a} Q' \ a \notin S \quad | \ | P \xrightarrow{a} P' \ Q \xrightarrow{a} Q' \ a \in S$ $\left| P \left| S \right| Q \xrightarrow{a} P' \left| S \right| Q \right| \left| P \left| S \right| Q \xrightarrow{a} P \left| S \right| Q' \right| \left| P \left| S \right| Q \xrightarrow{a} P' \left| S \right| Q' \right|$

The Institute for

Kesearch

 $\mathcal{L} \downarrow 1 \ (p) = \mathcal{L} \downarrow 2 \ (\lambda(p)) \text{ for all } p \in T \downarrow 1 \text{ s.t. } \mathcal{L} \downarrow 1 \ (p) \in S.$

 $Q = \{p \in T \downarrow 1 \mid \mathcal{L} \downarrow 1 \ (p) \notin S\} \cup \{p \in T \downarrow 2 \mid \mathcal{L} \downarrow 2 \ (p) \notin S\} \cup \{(p, \lambda(p)) \mid \mathcal{L} \downarrow 1 \ (p) \in S\}.$

3. Let $\pi \downarrow 1: Q \rightarrow (T \downarrow 1 \cup T \downarrow 2)$ where $\pi \downarrow 1: p \mapsto p$ for $p \in T \downarrow 1 \cup T \downarrow 2$ and $\pi \downarrow 1: (p \downarrow 1 \uparrow', p \downarrow 2 \uparrow') \mapsto p \downarrow 1 \uparrow'$ otherwise, and similarly for $\pi \downarrow 2$. Then $\pi \downarrow 1 (q) \leq \downarrow 1 \pi \downarrow 1 (q \uparrow')$ or $\pi \downarrow 2$

Let $I \downarrow S (T \downarrow 1, T \downarrow 2)$ denote the set of all S-synchronized interleavings of $T \downarrow 1$ and

 $Q = \{(p \downarrow 1, p \downarrow 2)\} \cup \{T \mid T \in I \downarrow S (T \downarrow 1, T \downarrow 2) \text{ for trajectories } T \downarrow 1 = (p \downarrow 1, p \downarrow 1 \uparrow')\}$

Let $q \in Q$ and $p \uparrow = \sup(q)$. Then define $\mathcal{L} \downarrow Q : Q \rightarrow L$ such that: $\mathcal{L} \downarrow Q : q \mapsto \mathcal{L} \downarrow 1$ ($p \uparrow$ ') if $p \uparrow \in P \downarrow 1$; $\mathcal{L} \downarrow Q : q \mapsto \mathcal{L} \downarrow 2$ ($p \uparrow$) if $p \uparrow \in P \downarrow 2$; and $\mathcal{L} \downarrow Q : q \mapsto \mathcal{L} \downarrow 1$ ($p \downarrow 1 \uparrow$) if

[1] J. Ferlez, R. Cleaveland, and S. Marcus. *Generalized synchronization trees*. In FOSSACS 2014, vol. 8412 of LNCS, pages 304–319, Grenoble, France,

[2] M. Hennessy and R. Milner. *Algebraic laws for nondeterminism and concurrency*. J. ACM, 32(1):137–161, January 1985.

[4] R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes in Computer Science. Springer-Verlag, 1980.

G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI- FN-19, Computer Science Department, Aarhus University,

[6] E. D. Tate Jr, J. W. Grizzle, and H. Peng. Shortest path stochastic control for hybrid electric vehicles. Int. J. Robust Nonlinear Control, 18(14):1409-1429,