Go-RealTime: Knowledge and Control of Time in High Level Programming Language

Award # CNS-1329755 (UCLA), CNS-1329644 (CMU), CNS-1329644 (UCSD), and CNS-1329650 (UCSB)

Type: Frontier; Start Date: June 2014

Zhou Fang (UCSD)

Co-Authors: Sean Hamilton, Hao Zhuang, Rajesh Gupta (UCSD)

Introduction

Go-RealTime is a new multiprocessor real-time framework, based on Go language. It integrates key functionalities of programming **time sensitive applications** into language runtime: **Quality of Time (QoT)**, **Real-Time Scheduler** and **Parallel Programming**.

This work provides the software/programming language level support for the RoseLine QoT Stack.

APIS

We import OS APIs (thread scheduler, CPU affinity and timer) into Go, modify Go runtime to enable direct goroutine switch, and build external Go packages.

Type	Method	Description
Resource	SetSched(thread, policy, priority) BindCPU(CPU) SetTimerFd(file_descriptor, time)	Linux thread scheduler Processor affinity Linux timer
Scheduling	GoSwitch(goroutine)	Switch to a goroutine
Task	NewWorker(Nw) task.SetTimeSpec(ts, tp, td, tr, QoT) task.Run(func, arg)	Create <i>Nw</i> workers Set timing specification Start a RT task

Design

System Model

Worker is the abstraction of thread with a processor resource reservation. Goroutines are sorted in a few priority queues. A sequential task is associated with a goroutine.

Parallel Programming

Go-RealTime models a **parallel task** as a **DAG of sub-tasks**, executed on a group of parallel goroutines, scheduled by global EDF algorithm.

Synchronization of parallel goroutines via channels

Parallel dynamic programming on 16 cores

Features

- ➤ **Goroutine** is the concurrency unit on which sequential and parallel tasks are running, controlled by Real-Time Schedulers.
- > **OS thread** is the unit of **processor resource reservation**. Linux thread schedulers (FIFO, RR, etc.) are imported into Go.
- Task describes a real-time program with a timing specification:
 {start ts, period tp, deadline td, worst case budget tr, utilization u = tr/tp, QoT}
- Adaptive timing accuracy of asynchronous events (e.g. timer, task switching) upon QoT requirements of tasks.
- Parallel tasks are programmed as Directed Acyclic Graph (DAG) of sub-tasks and executed on multiprocessor.
 Different transfer of tasks are programmed as Directed Acyclic Graph (DAG) of sub-tasks and executed on multiprocessor.
- Different types of tasks are scheduled by the suitable algorithm: Earliest Deadline First (EDF), Least Laxity First (LLF).
- The total processor resources are partitioned dynamically among all schedulers according to utilization of tasks.

Real-Time Scheduler

Algorithm

EDF/LLF schedulers are implemented for sequential tasks. For **LLF**, Go-RealTime compares laxities of the running task with the head task in queue via *check_async* method. A switch is allowed only after *tllf* (**default 10ms**) since the previous.

System Cost

- Queueing cost: time consumed by scheduler code
- > Switching cost: direct cost of goroutine switch
- > Timer cost: cost of operations on timer queue such as insertion
- ➤ Indirect cost: cache pollution due to switching

Period: $100 \text{ms} \le \text{tp} \le 300 \text{ms}$ (a) ultra light task $(0.01 \le u \le 0.1)$; (b) light task; (c) heavy task

Asynchronous Events and QoT

Go-RealTime handles **asynchronous events** via '**check_async'**' method. It checks all asynchronous events (timeout, message, etc.) and responds to the events which should have occurred.

Source code of Go-RealTime programs is instrumented with *check_async* calls by Go parser library. The locations of calls are adjusted ahead according to measured timing profile. The calls are dynamically enabled/disabled to satisfy **QoT** requirement at runtime.

Scheduling Algorithm Change

In the example, when the total utilization increases, the scheduler changes from EDF to LLF in order to avoid deadline miss.

