Go-RealTime: Knowledge and Control of Time
in High Level Programming Language

Award # CNS-1329755 (UCLA), CNS-1329644 (CMU),
CNS-1329644 (UCSD), and CNS-1329650 (UCSB)
Type: Frontier; Start Date: June 2014

Zhou Fang (UCSD)
Co-Authors: Sean Hamilton, Hao Zhuang, Rajesh Gupta (UCSD)

Introduction Features
Go-RealTime is a new multiprocessor real-time framework, based on Go language. » Goroutine is the concurrency unit on which sequential and parallel tasks are
It integrates key functionalities of programming time sensitive applications into running, controlled by Real-Time Schedulers.
language runtime: Quality of Time (QoT), Real-Time Scheduler and Parallel » OS thread is the unit of processor resource reservation. Linux thread
Programming. schedulers (FIFO, RR, etc.) are imported into Go.
This work provides the software/programming language level support for the > Task descrlbgsa real-tlm.e program with a timing specn‘.u.:atlf)n:
RoseLine QoT Stack. {start .ts, pgrpd tp, deadline td, worst case budget tr, utlllzz?tlon u-= tr/tp,. QoT}
» Adaptive timing accuracy of asynchronous events (e.g. timer, task switching)
APIS upon QoT requirements of tasks.
> Parallel tasks are programmed as Directed Acyclic Graph (DAG) of sub-tasks
We import OS APIs (thread scheduler, CPU affinity and timer) into Go, modify Go and executed on multiprocessor.
runtime to enable direct goroutine switch, and build external Go packages. » Different types of tasks are scheduled by the suitable algorithm: Earliest
Deadline First (EDF), Least Laxity First (LLF),
Resource SetSched(thread, policy, priority) Linux thread scheduler » The total processor resources are partitioned dynamically among all schedulers
BindCPU(CPU) Processor affinity according to utilization of tasks.
SetTimerFd(file_descriptor, time) Linux timer .
Scheduling GoSwitch(goroutine) Switch to a goroutine Real-Time Scheduler
Task NewWork_er(Nw) Crea_te_Nw Work_e_rs | Algorithm
:Zitgiﬂ&rﬁfﬁggm tp, td, tr, QOT) gte;rttlrgllggr fgselflflcatlon EDF/LLF schedulers are implemented for sequential tasks. For LLF, Go-RealTime

compares laxities of the running task with the head task in queue via check async

. method. A switch is allowed only after tif (default 10ms) since the previous.
IE:”‘EE!:E;’I;!E:;Ir1| 1 T ; ' L E
DS .. [:]8 ... IE
System Model 0 0B G 0B Ii _________
Worker is the abstraction of thread with a processor resource reservation. e D =7 04 e e e I ---------
Goroutines are Sorted in a feW priority queues. A Sequential taSk iS aSSOCiated With DQ:EE'FF 03k :EEFF ! i
a gOFOUtine. %.8 3 3?2 314 3?6 3i8 . 42 D 2;6 ZiB SiD 3.2

Moer Ilght task (0.1 <u < O 5) Hoet

1

....... | Ugmm””;.“m”jm“”mj”m”fm””ménm” I
Worker Worker ' ' ' ' '

OFE- SN _

Ly e et]

rached
rached

Oabn. i

Worker Worker

Processors

....... - 02 _EDF i_
-—-UF | WA

Worker Worker " % 28 30 32 38 3 22 34 36 38 4 42
HSE HSE
goroutine queues parallel tasks t heavy task (0'5 SUS 0'9) t
Parallel Programming System Cost 0.025 m £OF
Go-RealTime models a parallel task as a DAG of sub-tasks, executed on a group of | > Queueing cost: time consumed by _ oo -
parallel goroutines, scheduled by global EDF algorithm. scheduler code % 0015 . .
— — o . . O
" Gpo 1 O o s S — —— » Switching cost: direct cost of @
N | 14 | —— £
INitializing o ——— T :
goroutine e ——— goroutine switch 0.005
] e —————— » Timer cost: cost of operations on 0 J
e —— timer queue such as insertion
finalizing e , , JOME & O
goroutine e » Indirect cost: cache pollution due to ¢ & & cs“ Sy
| paraﬂelﬁogut_ineil O ———————————~ . h . (a) (b) (c)
TR B e switching Period: 100ms < tp £ 300ms
Synchronization of parallel goroutines via channels Parallel dynamic programming on 16 cores (a) ultra light task (0.01 < u <£0.1); (b) light task; (c) heavy task
Asynchronous Events and QoT I: @out: check_async() Scheduling Algorithm Change
: . 2: for 1 dinate d e
Go-RealTime handles asynchronous events via or é’?ﬁy?ziifkcﬁf}fnﬂ?e © In the example, when the total utilization
‘check async’ method. It checks all asynchronous for loop over x coordinate do Timer accuracy of Linux, Go and increases, the scheduler changes from EDF to
events (timeout, message, etc.) and responds to 5 @Ipx: check_async() Go-RealTime LLF in order to avoid deadline miss.
th i hich should h d 6: SetGrayCﬂlor(x y 1mage)
e events which should have occurred. o end for o< , S — e ? | | | |
. . 8 end fi "4 130, load-1 > | S W NN
Source code of Go-RealTime programs is =~ 0 ° 0al overhead persec (71150 load=1, _ g ; , g g
. . Instrumented -oms i* —a— GO-RT, @lpx : : : : :
instrumented with check _async calls by Go parser ¥ | —o-GoRT.@ly | Y imms
. . , convert_gray _o3t 4 | < GORT. @out 7 ; ;
library. The locations of calls are adjusted ahead function S | 4y Q z s
- . - . g B S T T
according to measured timing profile. The calls 0.2 R i:'i : ‘* = g 5
i : - lj 0.3ms s |
are dynamically enabled/disabled to satisfy QoT a1l e hxﬂi/a«aﬁf l‘l e RS . AR
- - [ligs i | ; ; ; ;
requirement at runtime. NEREHE IR Aﬁ{:_k; I ..._H.u,l‘. L e 2.5 3.0 3.5 4.0 4.5 5.0 5.5
100ns 1us 10us 1005 1ms 10ms 100ms 1s Time (s)

Timer Uncertainty

Carnegie

Mel lon U C L A

University

