
Go-RealTime: Knowledge and Control of Time 
in High Level Programming Language

Zhou Fang (UCSD)
Co-Authors: Sean Hamilton, Hao Zhuang, Rajesh Gupta (UCSD)

Award # CNS-1329755 (UCLA), CNS-1329644 (CMU),
CNS-1329644 (UCSD), and CNS-1329650 (UCSB)

Type: Frontier; Start Date: June 2014

Introduction Features

APIs

Real-Time Scheduler

Design

Go-RealTime is a new multiprocessor real-time framework, based on Go language.
It integrates key functionalities of programming time sensitive applications into
language runtime: Quality of Time (QoT), Real-Time Scheduler and Parallel
Programming.

This work provides the software/programming language level support for the
RoseLine QoT Stack.

 Goroutine is the concurrency unit on which sequential and parallel tasks are
running, controlled by Real-Time Schedulers.

 OS thread is the unit of processor resource reservation. Linux thread
schedulers (FIFO, RR, etc.) are imported into Go.

 Task describes a real-time program with a timing specification:
{start ts, period tp, deadline td, worst case budget tr, utilization u = tr/tp, QoT}

 Adaptive timing accuracy of asynchronous events (e.g. timer, task switching)
upon QoT requirements of tasks.

 Parallel tasks are programmed as Directed Acyclic Graph (DAG) of sub-tasks
and executed on multiprocessor.

 Different types of tasks are scheduled by the suitable algorithm: Earliest
Deadline First (EDF), Least Laxity First (LLF).

 The total processor resources are partitioned dynamically among all schedulers
according to utilization of tasks.

We import OS APIs (thread scheduler, CPU affinity and timer) into Go, modify Go
runtime to enable direct goroutine switch, and build external Go packages.

Type Method Description

Resource SetSched(thread, policy, priority)

BindCPU(CPU)

SetTimerFd(file_descriptor, time)

Linux thread scheduler

Processor affinity

Linux timer

Scheduling GoSwitch(goroutine) Switch to a goroutine

Task NewWorker(Nw)

task.SetTimeSpec(ts, tp, td, tr, QoT)

task.Run(func, arg)

Create Nw workers

Set timing specification

Start a RT task

System Model
Worker is the abstraction of thread with a processor resource reservation.
Goroutines are sorted in a few priority queues. A sequential task is associated with
a goroutine.

Parallel Programming
Go-RealTime models a parallel task as a DAG of sub-tasks, executed on a group of
parallel goroutines, scheduled by global EDF algorithm.

Synchronization of parallel goroutines via channels Parallel dynamic programming on 16 cores

Asynchronous Events and QoT
Go-RealTime handles asynchronous events via
‘check_async’ method. It checks all asynchronous
events (timeout, message, etc.) and responds to
the events which should have occurred.

Source code of Go-RealTime programs is
instrumented with check_async calls by Go parser
library. The locations of calls are adjusted ahead
according to measured timing profile. The calls
are dynamically enabled/disabled to satisfy QoT
requirement at runtime.

Algorithm
EDF/LLF schedulers are implemented for sequential tasks. For LLF, Go-RealTime
compares laxities of the running task with the head task in queue via check_async
method. A switch is allowed only after tllf (default 10ms) since the previous.

light task (0.1 ≤ u ≤ 0.5)

heavy task (0.5 ≤ u ≤ 0.9)

System Cost
 Queueing cost: time consumed by

scheduler code
 Switching cost: direct cost of

goroutine switch
 Timer cost: cost of operations on

timer queue such as insertion
 Indirect cost: cache pollution due to

switching Period: 100ms ≤  tp ≤ 300ms
(a) ultra light task (0.01 ≤ u ≤ 0.1); (b) light task; (c) heavy task

Scheduling Algorithm Change
In the example, when the total utilization
increases, the scheduler changes from EDF to
LLF in order to avoid deadline miss.

Instrumented 
convert_gray
function

Timer accuracy of Linux, Go and
Go-RealTime


