

Augmented Vehicular Reality: Extended Vision for Future Vehicles

TGERS WINLAB | Wireless Information Network Laboratory

NINLAB

GM

Ramesh Govindan (USC), Fan Bai (GM), Marco Gruteser (Rutgers)

Results

Problem:

rich array of sensors in autonomous vehicles e.g., LiDAR, radar and 3D cameras etc.

Abstract

• fundamental issue: line-of-sight, occlusion, extreme weather and lightning conditions

Solution: Augmented Vehicular Reality

- leverage wireless communication capabilities to broaden vehicle's horizon
- share visual information with nearby vehicles
- careful alignment of coordinate reference frames and dynamic object detection

Follower Vehicle

Approach

Vehicle Relative Positioning:

- construct and share Crowdsourced HD map **Extended** Vision:
- 3D points cloud using wireless share communication
- perspective transformation to get extended vision

Challenges

Construction of Crowdsourced HD Map:

building a crowdsourced HD map of a region with map segments from different vehicles

Perspective Transformation:

positioning visual information in other vehicle's coordinate reference system

Wireless Bandwidth Requirements:

transferring large amount of data with limited wireless bandwidth

Extended Vision (Follower Vehicle)

Crowdsourced HD Map

- all vehicles contribute to global *sparse* HD map
- cloud service stitches map segments from different vehicles
- GPS filter, pose estimation and place recognition
- cloud service shares map segments with • vehicles to aid in relative localization

- **Dynamic Object Isolation:**
- distinguishing between dynamic and static objects in the scene

Homograhy to detect dynamic objects

Dynamic objects extracted from the scene