Input-output robustness for software systems

Paulo Tabuada, Ayca Balkan, Sina Caliskan, Yasser Shoukry, Rupak Majumdar Cyber-Physical Systems Laboratory, Dept. of Electrical Engineering, UCLA Max Plank Institute for Software Systems

Introduction

- Cyber-Physical Systems (CPSs) are typically non-robust
 a small deviation from the design assumptions can lead to a large deviation in the desired behavior;
- While robustness is well understood for continuous components, the same is not true for cyber components;
- We introduce a notion of robustness for cyber components, modeled as transducers, and study the associated verification and synthesis problems.

Transducer models for software

We start with a set Σ of input symbols and a set Λ of output symbols;
 Σ* and Λ* denote the set of all finite strings obtained by concatenating elements of Σ and Λ, respectively;

Finite-state (weighted) automata

We will solve the verification and synthesis problems for finite-state (weighted) automata.

Definition

A finite-state automaton $A = (Q, q_0, \Sigma, \delta, \Lambda, H)$ consists of: > a finite set of states Q; > an initial state $q_0 \in Q$; > a set of inputs Σ ; > a transition function $\delta : Q \times \Sigma \rightarrow Q$; > a set of outputs Λ ; > and an output function $H : Q \rightarrow \Lambda$.

► A finite-state weighted automaton A is a finite-state automaton whose set

- A transducer is a map $f : \Sigma^* \to \Lambda^*$ if for every $\sigma, \sigma' \in \Sigma^*$ for which $\sigma \preceq \sigma'$ we have $f(\sigma) \preceq f(\sigma')$ where \preceq denotes the prefix partial order;
- ► A transducer offers an input/output view of software.

Input-Output Stability (IOS) as a notion of robustness

Inspired by Grüne's notion of Input-to-State Dynamic Stability we propose the following notion of Input-Output Stability:

Definition

Given parameters $\gamma, \eta \in \mathbb{N}$, we say the transducer $f : \Sigma^* \to \Lambda^*$ is (γ, η) -input-output stable (or (γ, η) -IOS) w.r.t. the functions $I : \Sigma^* \to \mathbb{N}_0$ and $O : \Lambda^* \to \mathbb{N}_0$ if for each $\sigma \in \Sigma^*$ we have

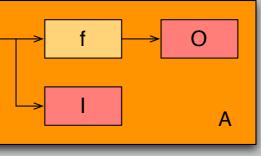
 $O(f(\sigma)) \le \max_{\sigma' \le \sigma} \left\{ \gamma I(\sigma') - \eta \left(|\sigma| - |\sigma'| \right) \right\}.$ (1)

- The parameter γ is called the robustness gain and the parameter η is called the rate of decay;
- We say a transducer f is *input-output stable* (or IOS) w.r.t. (I, O) if there exist $\gamma, \eta \in \mathbb{N}$ such that f is (γ, η) -IOS w.r.t. (I, O);

of outputs or *weights* is \mathbb{N}_0 and whose output map satisfies $H(q_0) = 0$. A weighted automaton A defines the cost function $I_A(\sigma) = H(\delta^*(q_0, \sigma))$;

Solving the verification problems

- We assume that f is defined by a finite-state automaton and that both I and O are given by finite-state weighted automata.
- ► These automata are combined to obtain a new finite-state automaton A:



▶ We now consider the operator $F : M^Q \to M^Q$, where $M = \{0, 1, ..., \overline{m}\}$, $\overline{m} = \max_{q \in Q} H'(q')$, defined by:

$$F(W)(q) = \max\left\{\gamma H'(q), W(q), \min_{q'\in\operatorname{Pre}(q)} W(q') - \eta
ight\}.$$

Theorem

Let A^f be a finite-state automaton. Let A^I and A^O be finite-state weighted automata defining costs I and O, respectively. Given $\eta, \gamma \in \mathbb{N}$, the transducer defined by A^f is (γ, η) -IOS with respect to (I, O) iff the infimal fixed point of F, denoted by W^* , satisfies the following inequality for every $q \in Q$: $H^O(q) \leq W^*(q)$.

- ► An IOS transducer satisfies two important properties:
- ▷ bounded disturbances lead to bounded consequences, mathematically $O_{\infty}(f(\sigma)) \leq \gamma I_{\infty}(\sigma)$ where $O_{\infty}(\lambda) = \max_{\lambda' \prec \lambda} O(\lambda)$ and
 - $\mathcal{O}_{\infty}(I(0)) \leq \gamma I_{\infty}(0)$ where $\mathcal{O}_{\infty}(\lambda) = \max_{\lambda' \leq \lambda} \mathcal{O}(\lambda)$ a
 - $I_{\infty}(\lambda) = \max_{\lambda' \preceq \lambda} I(\lambda);$
- b the effect of a sporadic disturbance disappears in finitely many steps.

Verification problems

 (γ, η) -IOS Verification problem: given transducer f, input and output cost functions I and O respectively, and parameters γ and η , is the transducer f (γ, η) -IOS for I and O?

IOS Verification problem: given transducer f and input and output cost functions I and O respectively, does there exist γ and η such that f is (γ, η) -IOS for I and O? (If so, find such γ and η .)

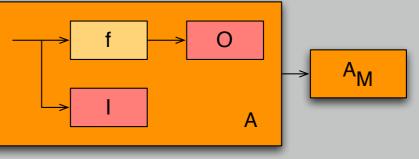
Synthesis problem

ln order to discuss the synthesis problem we assume Σ to be of the form

 Notice that our characterization gives a natural dynamic programming formulation for verification and a polynomial algorithm.
 The IOS verification problem admits a similar solution.

Solving the synthesis problems

► As before we construct a new finite-state automaton A':



where A_M is a monitor for the IOS property in the following sense. If the input $\sigma \in \Sigma^*$ takes the initial state of A' to $(q, m) \in Q \times M$ then:

 $m = \max_{\sigma' \leq \sigma} \{ \gamma I(\sigma') - \eta (|\sigma| - |\sigma'|) \}.$

► The synthesis problem is now equivalent to the problem of synthesizing a

 $\Sigma = \Sigma^c \times \Sigma^d$ where Σ is a set of *control* inputs and Σ^d is a set of *disturbance* inputs.

► A *controller* is a map:

$C: \Sigma^* \times \Sigma^c \to \Sigma^c$

transforming the history of past inputs $\sigma \in \Sigma^*$ and a given control input request s^c into the control input $C(\sigma, s^c)$ to be provided to the system. We denote the closed loop system by f_c .

We then have the following synthesis problem:

Synthesis problem: given transducer f, cost functions (I, O), and parameters (γ, η) , does there exist a controller C such that f_C is (γ, η) -IOS w.r.t. (I, O)?

controller to render the following set invariant (computation of the largest controlled invariant set):

$$S = \{(q, m) \in Q \times M \mid H^O(q) \leq m\}$$

is invariant.

This problem can be solved in $O(|Q| \cdot |M| \cdot |\Sigma^c|)$ time.

Future work

The next step is to combine this notion of robustness with existing notions for physical components in order to study the robustness of CPSs.

http://www.cyphylab.ee.ucla.edu

NSF award 1035916, CPS: Small: Towards robust cyber-physical systems