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Introduction

I Cyber-Physical Systems (CPSs) are typically non-robust
. a small deviation from the design assumptions can lead to a large

deviation in the desired behavior;
I While robustness is well understood for continuous components, the same is

not true for cyber components;
I We introduce a notion of robustness for cyber components, modeled as

transducers, and study the associated verification and synthesis problems.

Transducer models for software

I We start with a set ⌃ of input symbols and a set ⇤ of output symbols;
I ⌃⇤ and ⇤⇤ denote the set of all finite strings obtained by concatenating

elements of ⌃ and ⇤, respectively;
I A transducer is a map f : ⌃⇤ ! ⇤⇤ if for every �, �0 2 ⌃⇤ for which � � �0

we have f (�) � f (�0) where � denotes the prefix partial order;
I A transducer o↵ers an input/output view of software.

Input-Output Stability (IOS) as a notion of robustness

I Inspired by Grüne’s notion of Input-to-State Dynamic Stability we propose
the following notion of Input-Output Stability:

Definition

Given parameters �, ⌘ 2 N, we say the transducer f : ⌃⇤ ! ⇤⇤ is
(�, ⌘)-input-output stable (or (�, ⌘)-IOS) w.r.t. the functions I : ⌃⇤ ! N0

and O : ⇤⇤ ! N0 if for each � 2 ⌃⇤ we have

O (f (�))  max
�0��

{� I (�0)� ⌘ (|�|� |�0|)} . (1)

I The parameter � is called the robustness gain and the parameter ⌘ is called
the rate of decay;

I We say a transducer f is input-output stable (or IOS) w.r.t. (I , O) if there
exist �, ⌘ 2 N such that f is (�, ⌘)-IOS w.r.t. (I , O);

I An IOS transducer satisfies two important properties:
. bounded disturbances lead to bounded consequences, mathematically

O1(f (�))  �I1(�) where O1(�) = max�0�� O(�) and
I1(�) = max�0�� I (�);

. the e↵ect of a sporadic disturbance disappears in finitely many steps.

Verification problems

(�, ⌘)-IOS Verification problem: given transducer f , input and output cost
functions I and O respectively, and parameters � and ⌘, is the transducer f
(�, ⌘)-IOS for I and O?

IOS Verification problem: given transducer f and input and output cost
functions I and O respectively, does there exist � and ⌘ such that f is
(�, ⌘)-IOS for I and O? (If so, find such � and ⌘.)

Synthesis problem

I In order to discuss the synthesis problem we assume ⌃ to be of the form
⌃ = ⌃c ⇥ ⌃d where ⌃ is a set of control inputs and ⌃d is a set of
disturbance inputs.

I A controller is a map:
C : ⌃⇤ ⇥ ⌃c ! ⌃c

transforming the history of past inputs � 2 ⌃⇤ and a given control input
request sc into the control input C (�, sc) to be provided to the system. We
denote the closed loop system by fC .

I We then have the following synthesis problem:

Synthesis problem: given transducer f , cost functions (I , O), and parameters
(�, ⌘), does there exist a controller C such that fC is (�, ⌘)-IOS w.r.t.
(I , O)?

Finite-state (weighted) automata

I We will solve the verification and synthesis problems for finite-state
(weighted) automata.

Definition

A finite-state automaton A = (Q, q0, ⌃, �, ⇤, H) consists of:
. a finite set of states Q;
. an initial state q0 2 Q;
. a set of inputs ⌃;
. a transition function � : Q ⇥ ⌃ ! Q;
. a set of outputs ⇤;
. and an output function H : Q ! ⇤.

I A finite-state weighted automaton A is a finite-state automaton whose set
of outputs or weights is N0 and whose output map satisfies H(q0) = 0.

I A weighted automaton A defines the cost function IA(�) = H(�⇤(q0, �));

Solving the verification problems

I We assume that f is defined by a finite-state automaton and that both I
and O are given by finite-state weighted automata.

I These automata are combined to obtain a new finite-state automaton A:

f

I

O

A

I We now consider the operator F : MQ ! MQ, where M = {0, 1, . . . , m},
m = maxq2Q HI(qI), defined by:

F (W )(q) = max

⇢
�HI(q), W (q), min

q02Pre(q)
W (q0)� ⌘

�
.

Theorem

Let Af be a finite-state automaton. Let AI and AO be finite-state weighted
automata defining costs I and O, respectively. Given ⌘, � 2 N, the
transducer defined by Af is (�, ⌘)-IOS with respect to (I , O) i↵ the infimal
fixed point of F , denoted by W ⇤, satisfies the following inequality for every
q 2 Q:

HO(q)  W ⇤(q).

I Notice that our characterization gives a natural dynamic programming
formulation for verification and a polynomial algorithm.

I The IOS verification problem admits a similar solution.

Solving the synthesis problems

I As before we construct a new finite-state automaton A0:
f

I

O
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where AM is a monitor for the IOS property in the following sense. If the
input � 2 ⌃⇤ takes the initial state of A0 to (q, m) 2 Q ⇥M then:

m = max
�0��

{� I (�0)� ⌘(|�|� |�0|)}.

I The synthesis problem is now equivalent to the problem of synthesizing a
controller to render the following set invariant (computation of the largest
controlled invariant set):

S = {(q, m) 2 Q ⇥M | HO(q)  m}
is invariant.

I This problem can be solved in O(|Q| · |M | · |⌃c|) time.

Future work

I The next step is to combine this notion of robustness with existing notions
for physical components in order to study the robustness of CPSs.
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