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Phase I: Experimental Results
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Results and Discussion: All metrics correlated significantly (p<0.05) with task difficulty, with the exception of EEG
cognitive state metrics and the GSR peak magnitude. All models had a task difficultly prediction error of less than 10%, with
Model | having the smallest prediction error (4.81%) across all subjects and trials. Furthermore, Models I, lll, and IV did not
have statistically different prediction errors, indicating that not only can several models be used to predict task difficulty, but
also that knowledge of the specific task is not required.



