
XPFM =
⇥
XMT XErroravg

⇤0 (7)

5) Forearm and Upper Arm Kinematics: To capture kine-
matic features employed by the psychomotor system in the
human-robotic interaction, we measured mean value of the
magnitude of real-time angular velocity, linear acceleration of
forearm and upper arm from the inertial measurement unit
(IMU) mounted on the subject’s right-hand side. The effects of
gravity on acceleration measurement was eliminated by calcu-
lating the acceleration magnitude for each time-sampled x, y, z
components. To quantify the smoothness of movements, which
was firstly reported by Neville Hogan [36], we calculated the
total jerk trajectory of IMU by integrating the square of the
magnitude of jerk over the entire movement. (Eq. 8)

XFAK =
⇥
XAngVelFA XLinAccFA XJerkTr jFA

⇤0

XUAK =
⇥
XAngVelUA XLinAccUA XJerkTr jUA

⇤0 (8)

IV. RESULTS AND DISCUSSION
A statistical analysis identifying the effects of index of

difficulty and subject on the physiological, performance, and
kinematic data metrics are shown in Table I. A non-parametric
Kruskall-Wallis analysis was conducted to identify significant
groups due to non-normality of the data. Statistical significance
is determined though p-values of less than 0.05.

A. Performance Metrics
The performance metrics of movement time and target error

as a function of task index of difficulty are shown in Figure 5
(a) and (b), respectively. Experiment results shows that mea-
sured movement time MT in our study is correlated linearly
with index of difficulty (p<.001), additionally the average
error between the measured movement time and the movement
time predicted by Fitts’ law was 0.986 s (SD = ±1.150 s)
with low prediction error rate 7.29%. The results showed
our experimental design successfully applied Fitts’ Law and
the difficulty index served as eliciting parameter has changed
participants’ motor performance.

However, the target average error in our study generally
does increase with task difficulty (p<.001) with an average
error of 10.947 mm (SD = ±3.104 mm) for difficulty index
from 2.0 to 4.0 bits, and an average error of 17.750 mm (SD=
±8.836 mm) for difficulty index from 5.0 to 7.0 bits.

B. Psychological Response and Behavioural Kinematics
The physiological response metrics of muscle activation

level, EEG cognitive state metrics, galvanic skin response, and
heart rate variability as a function of task index of difficulty
are shown in Figure 7 (a-d), respectively. Muscle activation
level is statistically significantly affected by task difficulty
(p<0.05), as shown by Table I. Both the posterior deltoid
(PostD) and pectoralis major (PectM) had significantly lower
activation levels for tasks with indices of difficulty ID of
2 bits (16.38% ± 0.106, 11.22% ± 0.029 respectively) and
3 bits (16.91% ± 0.115, 11.60% ± 0.032 respectively) than
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Fig. 5: Performance metrics as a function of task index of
difficulty for movement time (MT) (a) and target average error
(Erroravg) (b).

tasks with a ID of 7 bits (25.43%± 0.135, 16.06%± 0.059
respectively). Additionally, both muscle groups showed sig-
nificant differences (p<.001) between subject groups with
subject 1 having the greatest muscular activation level for both
muscles PostD and PectM (31.28%± 0.037, and 17.44%±
0.032, accordingly). The cognitive state metrics derived from
the BIOPAC software did not show any significant trends
based on task difficulty, however, all metrics were signifi-
cantly different between subjects (p<.001 for all metrics).
The galvanic skin response peak changes (GSRpeak) were
not significantly different due to task difficulty(p=0.145);
however, subject 3 had significantly greater peak changes
than subject 2 (18.57% ± 0.483, and 16.20% ± 0.046 ac-
cordingly), subjects 1 and 4 had the smallest peak changes
in GSR (12.13%± 0.072, and 3.82%± 0.006, accordingly).
Heart rate variability was statistically significantly different
across both index of difficulty and subjects (p<0.01) with
heart rates being significantly lower for task difficult index
2 bits (73.26bpm± 13.275) and significantly higher for task
difficulty index 7 bits (93.32bpm ± 9.071) than the other
indices (average of all: 80.85bpm).

The behavioral kinematics metrics of forearm and upper arm
angular velocity, linear acceleration, and jerk trajectory as a
function of task index of difficulty are shown in Figure 7(a)
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Fig. 7: Physiological features as a function of task index
of difficulty for muscular activation level (MAL) (a), EEG
BIOPAC metrics (b), galvanic skin response level (GSR) (c),
and heart rate variability (HRV) (d).

In future work, we aim to improve our prediction accuracy
through the use of additional metrics and a more in-depth
analysis of our experimental data. The workload metrics gener-
ated from the BIOPAC EEG software did not show correlation
with index of difficulty; however, raw EEG signals have been
shown to be correlated to index of difficultly in the planning
state of an action [23]. Including metrics related to the EEG
amplitude in the time slightly before and immediately after
the onset of movement might lead to improved accuracy for
our study. Furthermore, metrics derived from the frequency
domain of the EMG signals could also give more detailed
information about how subjects coordinate their movements
based on task difficulty [15]. Finally, optimal control methods
similar to those proposed by Hamaya et al. [37], could be
used to modify human-in-the-loop teleoperation algorithms to
minimize the costs of non-intuitive ones.
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Fig. 8: Behavioural kinematics as a function of task index of
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TABLE II: Summary table showing regression coefficients
with R2 and predication error respectively of model I, II, III
and IV .

PARAM. X
REGRESSION COEFFICIENTS �

Model I Model II Model III Model IV
(w = 17) (w = 11) (w = 15) (w = 15)

XPostDrms 8.058 -1.996 5.730 2.539
XPectMrms -29.618 -2.454 -53.479 -33.476

XEngagement 2.607 N/A 2.590 1.757
XWorkload 1.297 N/A 8.176 3.635

XDistraction -1.808 N/A -2.241 -1.410
XSleepOnset 27.795 N/A 17.228 11.480
XHeadMvL. 2.463 N/A 2.149 0.748

XGSRpeak 2.587 N/A 1.017 0.828

XHR 0.047 0.022 0.017 0.319

XMT 0.120 0.549 N/A -0.079
XErroravg -0.132 -0.019 N/A 0.029

XAngVelFA 0.206 -0.140 0.653 -0.027
XLinAccFA 5.549 -1.054 5.232 -4.516

XJerkTr jFA -1.421 -0.751 -1.344 N/A

XAngVelUA 2.173 0.844 1.8752 1.424
XLinAccUA -61.218 22.567 -63.534 -22.748

XJerkTr jUA 3.260 -3.451 3.453 N/A

b0 23.143 �11.654 24.783 12.051

R2 0.979 0.966 0.957 0.971
PRED. ERR.% 4.81(±0.064) 7.61(±0.081) 7.26(±0.064) 7.14(±0.066)

Dr. Tyler Summers for some insights into developing our
models.
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Fig. 7: Physiological features as a function of task index
of difficulty for muscular activation level (MAL) (a), EEG
BIOPAC metrics (b), galvanic skin response level (GSR) (c),
and heart rate variability (HRV) (d).

In future work, we aim to improve our prediction accuracy
through the use of additional metrics and a more in-depth
analysis of our experimental data. The workload metrics gener-
ated from the BIOPAC EEG software did not show correlation
with index of difficulty; however, raw EEG signals have been
shown to be correlated to index of difficultly in the planning
state of an action [23]. Including metrics related to the EEG
amplitude in the time slightly before and immediately after
the onset of movement might lead to improved accuracy for
our study. Furthermore, metrics derived from the frequency
domain of the EMG signals could also give more detailed
information about how subjects coordinate their movements
based on task difficulty [15]. Finally, optimal control methods
similar to those proposed by Hamaya et al. [37], could be
used to modify human-in-the-loop teleoperation algorithms to
minimize the costs of non-intuitive ones.
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with R2 and predication error respectively of model I, II, III
and IV .

PARAM. X
REGRESSION COEFFICIENTS �

Model I Model II Model III Model IV
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XAngVelFA 0.206 -0.140 0.653 -0.027
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Fig. 7: Physiological features as a function of task index
of difficulty for muscular activation level (MAL) (a), EEG
BIOPAC metrics (b), galvanic skin response level (GSR) (c),
and heart rate variability (HRV) (d).

In future work, we aim to improve our prediction accuracy
through the use of additional metrics and a more in-depth
analysis of our experimental data. The workload metrics gener-
ated from the BIOPAC EEG software did not show correlation
with index of difficulty; however, raw EEG signals have been
shown to be correlated to index of difficultly in the planning
state of an action [23]. Including metrics related to the EEG
amplitude in the time slightly before and immediately after
the onset of movement might lead to improved accuracy for
our study. Furthermore, metrics derived from the frequency
domain of the EMG signals could also give more detailed
information about how subjects coordinate their movements
based on task difficulty [15]. Finally, optimal control methods
similar to those proposed by Hamaya et al. [37], could be
used to modify human-in-the-loop teleoperation algorithms to
minimize the costs of non-intuitive ones.

ACKNOWLEDGMENT

We thank the volunteers that participated in this study as
well as members of the Human-Enabled Robotic Technology
Laboratory at the University of Texas at Dallas. We also thank

2.00 3.00 4.00 5.00 6.17 7.00
Index of Difficulty (bits)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FOREARM MOVEMENT

Angular Velocity ( rad/s)
Linear Acceleration ( *10 mm/s2)
Jerk Trajectory ( /107 mm/s3)

(a) Forearm Kinematics

2.00 3.00 4.00 5.00 6.17 7.00
Index of Difficulty (bits)

0

0.5

1

1.5

2

2.5

3

3.5

4

UPPERARM MOVEMENT

Angular Velocity ( rad/s)
Linear Acceleration ( *10 mm/s2)
Jerk Trajectory ( /107 mm/s3)

(b) Upper arm Kinematics

Fig. 8: Behavioural kinematics as a function of task index of
difficulty for forearm (FA) movement (a) and upper arm (UA)
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XPFM =
⇥
XMT XErroravg

⇤0 (7)

5) Forearm and Upper Arm Kinematics: To capture kine-
matic features employed by the psychomotor system in the
human-robotic interaction, we measured mean value of the
magnitude of real-time angular velocity, linear acceleration of
forearm and upper arm from the inertial measurement unit
(IMU) mounted on the subject’s right-hand side. The effects of
gravity on acceleration measurement was eliminated by calcu-
lating the acceleration magnitude for each time-sampled x, y, z
components. To quantify the smoothness of movements, which
was firstly reported by Neville Hogan [36], we calculated the
total jerk trajectory of IMU by integrating the square of the
magnitude of jerk over the entire movement. (Eq. 8)

XFAK =
⇥
XAngVelFA XLinAccFA XJerkTr jFA

⇤0

XUAK =
⇥
XAngVelUA XLinAccUA XJerkTr jUA

⇤0 (8)

IV. RESULTS AND DISCUSSION
A statistical analysis identifying the effects of index of

difficulty and subject on the physiological, performance, and
kinematic data metrics are shown in Table I. A non-parametric
Kruskall-Wallis analysis was conducted to identify significant
groups due to non-normality of the data. Statistical significance
is determined though p-values of less than 0.05.

A. Performance Metrics
The performance metrics of movement time and target error

as a function of task index of difficulty are shown in Figure 5
(a) and (b), respectively. Experiment results shows that mea-
sured movement time MT in our study is correlated linearly
with index of difficulty (p<.001), additionally the average
error between the measured movement time and the movement
time predicted by Fitts’ law was 0.986 s (SD = ±1.150 s)
with low prediction error rate 7.29%. The results showed
our experimental design successfully applied Fitts’ Law and
the difficulty index served as eliciting parameter has changed
participants’ motor performance.

However, the target average error in our study generally
does increase with task difficulty (p<.001) with an average
error of 10.947 mm (SD = ±3.104 mm) for difficulty index
from 2.0 to 4.0 bits, and an average error of 17.750 mm (SD=
±8.836 mm) for difficulty index from 5.0 to 7.0 bits.

B. Psychological Response and Behavioural Kinematics
The physiological response metrics of muscle activation

level, EEG cognitive state metrics, galvanic skin response, and
heart rate variability as a function of task index of difficulty
are shown in Figure 7 (a-d), respectively. Muscle activation
level is statistically significantly affected by task difficulty
(p<0.05), as shown by Table I. Both the posterior deltoid
(PostD) and pectoralis major (PectM) had significantly lower
activation levels for tasks with indices of difficulty ID of
2 bits (16.38% ± 0.106, 11.22% ± 0.029 respectively) and
3 bits (16.91% ± 0.115, 11.60% ± 0.032 respectively) than
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Fig. 5: Performance metrics as a function of task index of
difficulty for movement time (MT) (a) and target average error
(Erroravg) (b).

tasks with a ID of 7 bits (25.43%± 0.135, 16.06%± 0.059
respectively). Additionally, both muscle groups showed sig-
nificant differences (p<.001) between subject groups with
subject 1 having the greatest muscular activation level for both
muscles PostD and PectM (31.28%± 0.037, and 17.44%±
0.032, accordingly). The cognitive state metrics derived from
the BIOPAC software did not show any significant trends
based on task difficulty, however, all metrics were signifi-
cantly different between subjects (p<.001 for all metrics).
The galvanic skin response peak changes (GSRpeak) were
not significantly different due to task difficulty(p=0.145);
however, subject 3 had significantly greater peak changes
than subject 2 (18.57% ± 0.483, and 16.20% ± 0.046 ac-
cordingly), subjects 1 and 4 had the smallest peak changes
in GSR (12.13%± 0.072, and 3.82%± 0.006, accordingly).
Heart rate variability was statistically significantly different
across both index of difficulty and subjects (p<0.01) with
heart rates being significantly lower for task difficult index
2 bits (73.26bpm± 13.275) and significantly higher for task
difficulty index 7 bits (93.32bpm ± 9.071) than the other
indices (average of all: 80.85bpm).

The behavioral kinematics metrics of forearm and upper arm
angular velocity, linear acceleration, and jerk trajectory as a
function of task index of difficulty are shown in Figure 7(a)
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Fig. 6: User trajectory from Y-Z view in Fitts’ tasks of different
IDs.
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  tasks	
  of	
  known	
  difficulty.	
  Four	
  models	
  
were	
  tested,	
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  all	
  metrics	
  (Model	
  I),	
  	
  metrics	
  
correlated	
  to	
  task	
  difficulty	
  (Model	
  II),	
  and	
  two	
  equal	
  	
  
rank	
  models	
  missing	
  performance	
  
metrics	
  (Model	
  III)	
  and	
  kinema.c	
  
metrics	
  (Model	
  IV).	
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  Metrics	
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  Experimental	
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We	
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  17	
  metrics	
  to	
  characterize	
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  trial	
  using	
  
performance,	
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  and	
  	
  
physiological	
  data.	
  Metrics	
  	
  
include:	
  muscle	
  ac.va.on,	
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  state,	
  heart	
  rate	
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  and	
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  peak	
  mag.	
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Sensor	
  Integra&on	
  to	
  
Measure	
  Intui&veness	
  	
  	
  
To	
  measure	
  user	
  performance	
  
and	
  physiological	
  response,	
  we	
  
are	
  integra.ng	
  sensors	
  such	
  as	
  
IMUs	
  with	
  electromyography,	
  
skin	
  galvanic	
  response,	
  and	
  
heart	
  rate	
  measurements	
  
(Shimmer	
  Sensing)	
  and	
  an	
  EEG	
  

	
  headset	
  (Biopac)	
  with	
  
	
  custom	
  C++	
  code	
  to	
  	
  
	
  control	
  a	
  hap.c	
  device,	
  	
  
	
  using	
  the	
  Robot	
  	
  
	
  Opera.ng	
  System	
  
	
  (ROS).	
  	
  

Phase	
  I:	
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  of	
  Intui&veness	
  

Changing	
  Widths	
  

Designing	
  a	
  Task	
  of	
  Known	
  Difficulty	
  	
  	
  
Fiks’	
  Law	
  is	
  a	
  psychomotor	
  rela.onship	
  between	
  the	
  .me	
  
(T)	
  to	
  move	
  between	
  
	
  targets	
  of	
  distance	
  (D)	
  	
  
apart,	
  and	
  width	
  (W).	
  	
  
We	
  conducted	
  a	
  human	
  
user	
  study	
  (UTD	
  IRB	
  	
  
#14-­‐57)	
  to	
  build	
  models	
  
of	
  intui.veness	
  using	
  known	
  difficulty	
  and	
  user	
  response.	
  	
  

Results	
  and	
  Discussion:	
  All	
  metrics	
  correlated	
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  (p<0.05)	
  with	
  task	
  difficulty,	
  with	
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  of	
  EEG	
  
cogni.ve	
  state	
  metrics	
  and	
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  peak	
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  All	
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  a	
  task	
  difficultly	
  predic.on	
  error	
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  than	
  10%,	
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  predic.on	
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  Models	
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  IV	
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  not	
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  predic.on	
  errors,	
  indica.ng	
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  not	
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  models	
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  to	
  predict	
  task	
  difficulty,	
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  knowledge	
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  task	
  is	
  not	
  required.	
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Additionally, several groups have developed models related
to the emotional or affective state of the human user. Kulić and
Croft developed a Hidden Markov Model to estimate human
affective state though the use of heart rate measurements, skin
conductance, and facial muscle activity [19]. Rani et al. con-
ducted to study to compare different types of machine learning
methods on the estimation of affective state from physiological
sensors and predicted affective state with 85.81% accuracy
when using a support vector machine [13]. Zhang et at.
used an adaptive support vector machine to estimate mental
workload for users performing a simulated safety critical
task [20]. Finally, Bianchi et al. took a simpler, yet still
effective, approach to quantify arousal and valence by using
post-experiment Circumflex Model of Affect (CMA) surveys
to evaluate the role of stimulus parameters on user’s emotional
response to caress-like and softness tactile displays [21].

Physical, cognitive, and affective models are not only im-
portant for the evaluation and classification of user state during
interaction tasks but could also enable adaptive control in
human-robot collaborative tasks. In a study by Shirzad and
Van der Loos, performance metrics including adaptation speed,
maximum error, and error changes were used, along with
physiological response metrics of skin conductivity, respiration
rate, and normalized skin temperature, to predict user desired
task difficulty in a rehabilitation reaching task [14]. The results
from this paper indicated that motor performance metrics had
the best predication of desired task difficulty; however, physi-
ological attributes were believed to provide richer information
about specific user preferences.

In this paper, we employ a least-squares optimization to
fit model parameters to metrics of physiological response,
performance, and user kinematics using data from human user
studies with tasks of known difficulty.

B. Fitts‘ Law
In general, the difficulty of a task can be a subjective mea-

sure which may changes across all human subjects. One way to
characterize the difficulty level of a control task quantitatively
is through Fitts’ law [16]. Fitts’ Law is a widely accepted
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Fig. 1: A bivariate pointing task has a known index of
difficulty (ID) as defined by Fitts’ law (Eq. 1). Index of
difficulty increases with increased distance between targets and
decreases with decreased target width.

theory which can describe human psychomotor behavior in a
simple bi-variate pointing task. In a Fitts’ task, participants
are required to move as fast as possible between two targets
of certain width, W, with a distance, D, separating them. Task
index of difficulty ID, can be mathematically quantified by a
log-linear relationship between the distance D and the target
width W (Fig. 1). The units of this index of difficulty are called
”bits” (Eq. 1) and movement time can also be predicted as a
linear function of ID. NEED EQUATION HERE!

ID = log2(2D/W ) (1)

C. Model of Intuitiveness

It has been shown, in a variety of studies using Fitts‘
law, that the variation of task difficulty can be correlated to
changes in human dynamic coordination patterns and muscular
activation levels [15], [22], cognitive state [23], and task
performance [24]. Furthermore, task difficulty can also be pre-
dicted through physiological and kinematic data in non-Fitts’
law rehabilitation reaching tasks [25]. In this study, we aim
to develop a general model for task difficulty using a variety
of metrics derived from human physical and psychological
response (e.g., cognition, muscular activation, locomotion), as
well as objective performance features. Furthermore, we seek
to identify which metrics are important for the prediction of
task difficulty by evaluating of several candidate models. As
the relationship between task difficulty and movement time in
a Fitts’ law task is linear, we hypothesize that a task difficulty
can also be predicted as a linear function of a set of unknown
coefficients, �, and explanatory variables, X , (e.g., sets of
metrics derived from performance and physiological response)
with a mean zero error term e . Assuming task difficulty,
Y , is known (defined through Fitts’ law), the coefficients
can be identified through a least-squares optimization using
experimental data of users performing Fitts’ law reaching tasks
(each trial defined by case, i). This model can be represented
mathematically as Eq. 2: WE SHOULD TEST THE LINEAR
ASSUMPTION SOMEHOW

Yi = b0 +
w

Â
i=1

b jXi, j + ei

i = 1, · · · ,u ; j = 1, · · · ,w
(2)

where
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Additionally, several groups have developed models related
to the emotional or affective state of the human user. Kulić and
Croft developed a Hidden Markov Model to estimate human
affective state though the use of heart rate measurements, skin
conductance, and facial muscle activity [19]. Rani et al. con-
ducted to study to compare different types of machine learning
methods on the estimation of affective state from physiological
sensors and predicted affective state with 85.81% accuracy
when using a support vector machine [13]. Zhang et at.
used an adaptive support vector machine to estimate mental
workload for users performing a simulated safety critical
task [20]. Finally, Bianchi et al. took a simpler, yet still
effective, approach to quantify arousal and valence by using
post-experiment Circumflex Model of Affect (CMA) surveys
to evaluate the role of stimulus parameters on user’s emotional
response to caress-like and softness tactile displays [21].

Physical, cognitive, and affective models are not only im-
portant for the evaluation and classification of user state during
interaction tasks but could also enable adaptive control in
human-robot collaborative tasks. In a study by Shirzad and
Van der Loos, performance metrics including adaptation speed,
maximum error, and error changes were used, along with
physiological response metrics of skin conductivity, respiration
rate, and normalized skin temperature, to predict user desired
task difficulty in a rehabilitation reaching task [14]. The results
from this paper indicated that motor performance metrics had
the best predication of desired task difficulty; however, physi-
ological attributes were believed to provide richer information
about specific user preferences.

In this paper, we employ a least-squares optimization to
fit model parameters to metrics of physiological response,
performance, and user kinematics using data from human user
studies with tasks of known difficulty.

B. Fitts‘ Law
In general, the difficulty of a task can be a subjective mea-

sure which may changes across all human subjects. One way to
characterize the difficulty level of a control task quantitatively
is through Fitts’ law [16]. Fitts’ Law is a widely accepted
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Fig. 1: A bivariate pointing task has a known index of
difficulty (ID) as defined by Fitts’ law (Eq. 1). Index of
difficulty increases with increased distance between targets and
decreases with decreased target width.

theory which can describe human psychomotor behavior in a
simple bi-variate pointing task. In a Fitts’ task, participants
are required to move as fast as possible between two targets
of certain width, W, with a distance, D, separating them. Task
index of difficulty ID, can be mathematically quantified by a
log-linear relationship between the distance D and the target
width W (Fig. 1). The units of this index of difficulty are called
”bits” (Eq. 1) and movement time can also be predicted as a
linear function of ID. NEED EQUATION HERE!

ID = log2(2D/W ) (1)

C. Model of Intuitiveness

It has been shown, in a variety of studies using Fitts‘
law, that the variation of task difficulty can be correlated to
changes in human dynamic coordination patterns and muscular
activation levels [15], [22], cognitive state [23], and task
performance [24]. Furthermore, task difficulty can also be pre-
dicted through physiological and kinematic data in non-Fitts’
law rehabilitation reaching tasks [25]. In this study, we aim
to develop a general model for task difficulty using a variety
of metrics derived from human physical and psychological
response (e.g., cognition, muscular activation, locomotion), as
well as objective performance features. Furthermore, we seek
to identify which metrics are important for the prediction of
task difficulty by evaluating of several candidate models. As
the relationship between task difficulty and movement time in
a Fitts’ law task is linear, we hypothesize that a task difficulty
can also be predicted as a linear function of a set of unknown
coefficients, �, and explanatory variables, X , (e.g., sets of
metrics derived from performance and physiological response)
with a mean zero error term e . Assuming task difficulty,
Y , is known (defined through Fitts’ law), the coefficients
can be identified through a least-squares optimization using
experimental data of users performing Fitts’ law reaching tasks
(each trial defined by case, i). This model can be represented
mathematically as Eq. 2: WE SHOULD TEST THE LINEAR
ASSUMPTION SOMEHOW
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Additionally, several groups have developed models related
to the emotional or affective state of the human user. Kulić and
Croft developed a Hidden Markov Model to estimate human
affective state though the use of heart rate measurements, skin
conductance, and facial muscle activity [19]. Rani et al. con-
ducted to study to compare different types of machine learning
methods on the estimation of affective state from physiological
sensors and predicted affective state with 85.81% accuracy
when using a support vector machine [13]. Zhang et at.
used an adaptive support vector machine to estimate mental
workload for users performing a simulated safety critical
task [20]. Finally, Bianchi et al. took a simpler, yet still
effective, approach to quantify arousal and valence by using
post-experiment Circumflex Model of Affect (CMA) surveys
to evaluate the role of stimulus parameters on user’s emotional
response to caress-like and softness tactile displays [21].

Physical, cognitive, and affective models are not only im-
portant for the evaluation and classification of user state during
interaction tasks but could also enable adaptive control in
human-robot collaborative tasks. In a study by Shirzad and
Van der Loos, performance metrics including adaptation speed,
maximum error, and error changes were used, along with
physiological response metrics of skin conductivity, respiration
rate, and normalized skin temperature, to predict user desired
task difficulty in a rehabilitation reaching task [14]. The results
from this paper indicated that motor performance metrics had
the best predication of desired task difficulty; however, physi-
ological attributes were believed to provide richer information
about specific user preferences.

In this paper, we employ a least-squares optimization to
fit model parameters to metrics of physiological response,
performance, and user kinematics using data from human user
studies with tasks of known difficulty.

B. Fitts‘ Law
In general, the difficulty of a task can be a subjective mea-

sure which may changes across all human subjects. One way to
characterize the difficulty level of a control task quantitatively
is through Fitts’ law [16]. Fitts’ Law is a widely accepted
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Fig. 1: A bivariate pointing task has a known index of
difficulty (ID) as defined by Fitts’ law (Eq. 1). Index of
difficulty increases with increased distance between targets and
decreases with decreased target width.

theory which can describe human psychomotor behavior in a
simple bi-variate pointing task. In a Fitts’ task, participants
are required to move as fast as possible between two targets
of certain width, W, with a distance, D, separating them. Task
index of difficulty ID, can be mathematically quantified by a
log-linear relationship between the distance D and the target
width W (Fig. 1). The units of this index of difficulty are called
”bits” (Eq. 1) and movement time can also be predicted as a
linear function of ID. NEED EQUATION HERE!

ID = log2(2D/W ) (1)

C. Model of Intuitiveness

It has been shown, in a variety of studies using Fitts‘
law, that the variation of task difficulty can be correlated to
changes in human dynamic coordination patterns and muscular
activation levels [15], [22], cognitive state [23], and task
performance [24]. Furthermore, task difficulty can also be pre-
dicted through physiological and kinematic data in non-Fitts’
law rehabilitation reaching tasks [25]. In this study, we aim
to develop a general model for task difficulty using a variety
of metrics derived from human physical and psychological
response (e.g., cognition, muscular activation, locomotion), as
well as objective performance features. Furthermore, we seek
to identify which metrics are important for the prediction of
task difficulty by evaluating of several candidate models. As
the relationship between task difficulty and movement time in
a Fitts’ law task is linear, we hypothesize that a task difficulty
can also be predicted as a linear function of a set of unknown
coefficients, �, and explanatory variables, X , (e.g., sets of
metrics derived from performance and physiological response)
with a mean zero error term e . Assuming task difficulty,
Y , is known (defined through Fitts’ law), the coefficients
can be identified through a least-squares optimization using
experimental data of users performing Fitts’ law reaching tasks
(each trial defined by case, i). This model can be represented
mathematically as Eq. 2: WE SHOULD TEST THE LINEAR
ASSUMPTION SOMEHOW
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