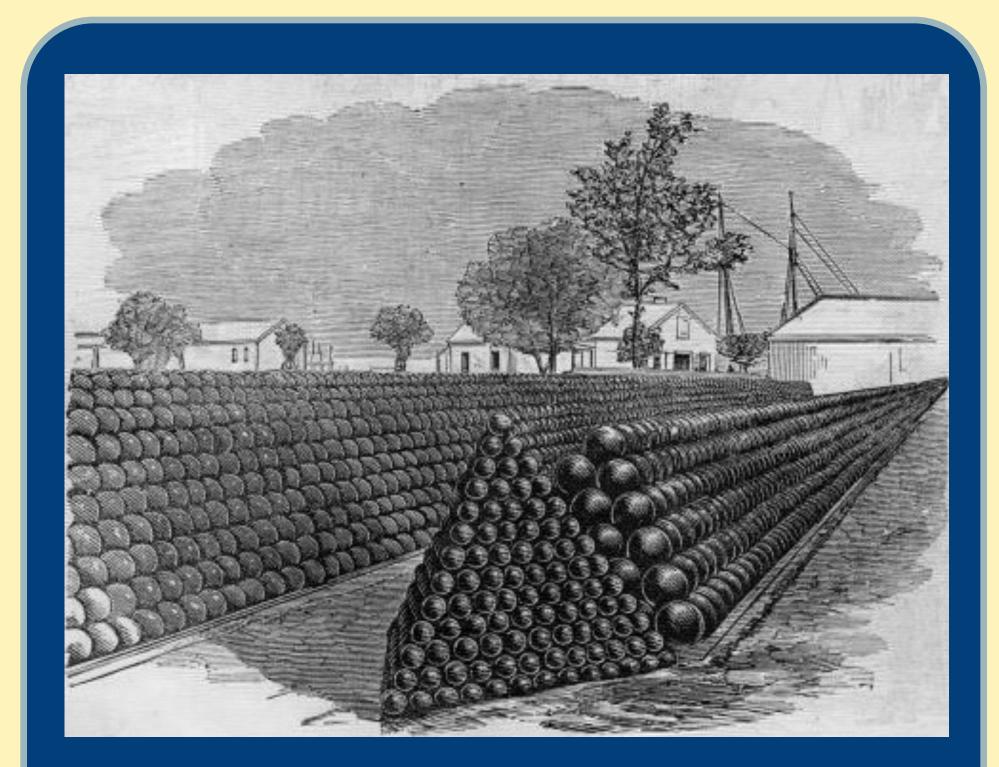
Lattices, modularity, and crypto

- Pi: Stephen D. Miller, Rutgers University
 - http://www.math.rutgers.edu/~sdmiller

Lattices arise in cryptography:


- In attacking cryptosystems (e.g., Knapsack, variants of RSA)
- Constructing new cryptosystems (e.g., for homomorphic encryption)

Fundamental problem: shortest vector

- Hard computational problem
- Related to classical sphere packing problem of how many balls fit into a large box.

Do we understand how short it can be?

Related question: energy minimization

Given a potential function and a fixed density of points, what configuration of points in \mathbb{R}^d minimizes energy?

In d=3: why do crystals form in nature?

The densest packing in \mathbb{R}^3

Analytic Number Theory and Modular Forms are Applicable:

- Cohn-Elkies approach using Poisson Viazovska (2016): Modular form • sum (1999)
 - construction, solves sphere packing in \mathbb{R}^8
- Cohn-Miller: found rational numbers, e.g., Bernoulli number $\frac{691}{2730}$ in Taylor expansions (2016)
- Cohn-Kumar-Miller-Radchenko-Viazovska (2016): solves sphere packing in \mathbb{R}^{24}

Recent Progress: Solution in \mathbb{R}^{24}

The densest sphere packing in 24 dimensions has density exactly $\frac{\pi^{12}}{12!}$. It is provided by centering spheres of radius 1 at each vector of the Leech lattice.

Universal optimality of E_8

Cohn-Kumar-Miller-Radchenko-Viazovska (2016): If $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ is "completely monotonic"

Uniqueness:

No other periodic sphere packing even equals the density of one provided by the Leech lattice.

(Removing a single sphere does not change density, so some aperiodic ones do.)

 $((-1)^n f^{(n)}(x) \ge 0, \forall n \ge 0)$ then the E₈ lattice minimizes potential energy for *f* among all point configurations density 1 in \mathbb{R}^8 .

(Implies sphere packing.)

Other lattice results

Method to extend Boneh-Durfee's smallexponent RSA attacks to higher exponents.

Interested in meeting the PIs? Attach post-it note below!

National Science Foundation WHERE DISCOVERIES BEGIN

The 3rd NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting January 9-11, 2017 Arlington, Virginia

