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Challenge: Control space for assistive robot arms Scientific impact: Mathematical formalism for
IS unmanageably complex mode switching with real-world evaluations

> Assistive robots with 7 DOF are complex to control, because available
interfaces, such as joysticks, sip-n-puff, and head arrays, only cover
a portion of the control space

> |dentify the expense of mode switching during representative

 tasks (Herlant et al., 2016)
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represents task time,
and y axis represents
mode switch time.
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~Learn when to switch control modes by observing a human

~ Modal control allows users to actuate a few DOF at a time, but it takes operating the robot

significant time and mental energy (Herlant et al,, 2016) 1. From teleoperation control signal (Jain and Argall, 2016):

~ Goal: Ease the burden of modal control to enable assistive arm use with

. . ‘. ? Step 1: Record data trajectories durin - ' i '
varied interfaces. P J 8 Step 2: Train a classifier to predict a

human teleoperation of a robot arm control mode

Task 1 Task 2
Courtesy of Kinova Robotics
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Solution: Intelligent autonomous control mode 'y @[& 777
. . . . . Data from user teleoperation in SVM feature space. Green: translational mode; blue: Automated mode switches during a :rajectory in Cartesian space.
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control modes as the states. , o
2. From eye gaze data (Admoni & Srinivasa, 2016):

~ Key insight: Model assistance as an optimization over a desired cost function,
with system’s uncertainty over user’s goals represented in a POMDP. ‘

= Key insight: Select the right time to switch modes by formulating it as a time- -

optimal assistance problem, or by learning it from human demonstration. Recording eye gaze with a Sequence of still frames from the eye tracker image stream. User gaze (green dot) monitors
head-mounted eye tracker. spout position and pitcher contents as pouring begins, and can reveal the user’s next action.
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