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Paradigm Shift in Learning for Calibration

3D printing is a promising manufacturing technology marred by geomet-
ric shape deformation due to material solidification in the printing process.

Current “run-to-run” calibration methods use predictive deformation
models to change the input CAD model and compensate for deformation.

Their common disadvantage is that experiments must be performed on
several copies of each individual shape to learn deformation models.

The wide variety of process conditions and shapes, and the high operating
cost of 3D printing, severely restrict the number of possible test cases.

Objective: Efficient Learning in 3D Printing

Calibration of 3D printing requires efficient learning of deformation
models for new shapes.

We developed a general Bayesian methodology for learning deformation
models from just one new printed shape and a small sample of previously
printed, different shapes.

Our methodology can also enable recalibration of ineffective deformation
models and compensation plans with little further experimentation.

Background and Notation
We consider in-plane deformation for the individual layers of a 3D shape.

The Cartesian coordinates (x, y) of a printed shape are transformed to
polar coordinates (θ, r(θ)) to decouple geometric shape complexity from
learning of deformation models (Huang et al., 2015).

The input CAD model is represented by r0 : [0, 2π]→ R.

Deformation for a point θ on a printed shape r0(·) is defined as

∆r(θ, r0(·)) = r(θ, r0(·))− r0(θ).

We connect deformation models of different shapes in a modular fashion
using the “cookie-cutter” framework of Huang et al. (2014).

Deformation model for a previously manufactured, learned shape r0(·):

∆r(θ, r0(·)) = δ0(θ, r0(·),α) + εθ.

Deformation model for a new, unlearned shape r1(·):

∆r(θ, r1(·)) = δ0(θ, r0(·),α) + δ1(θ, r1(·),β) + ξθ.

The δ0 and δ1 are deformation features, with δ1 unique to r1(·).

Bayesian Learning Methodology
1: Construct a discrepancy measure to extract information on δ1 for a

new shape r1(·) based on a single newly printed shape and infer-
ences on α from previously printed shapes r0(·).

T (θ, r1(·)) = ∆r(θ, r1(·))− δ0(θ, r0(·), α̃)

2: Stratify the discrepancy measures and test within and across strata
to cluster points with distinct deformation feature trends.

δ1(θ, r1(·),β) =
K∑
k=1

I(θ ∈ Θk)δ1,k(θ, r1(·),βe(θ),k)

3: Specify a hierarchical model across strata for the βe,k that can be
extended to shapes possessing similar features as r1(·).

β1,k, . . . ,βE,k | ψk ∼ p(ψk)

Case Study: Learning Straight Edges

Application of Bayesian Methodology
1 & 2: Extract and cluster discrepancy measures for one regular pentagon

using inferences on α from three previously printed flat cylinders.

δ1,k
(
θ, r1(·),βe(θ),k

)
= βe(θ),0 + βe(θ),k,1 {r1(θ)− r1(m(θ))}be(θ),k

3: Specify hierarchical models for the βe(θ),0, βe(θ),k,1 across strata.

βe,k,1, . . . , βE,k,1 | µk, τ2k ∼ N
(
µk, τ

2
k

)
The learned deformation model is fit simultaneously to new shapes pos-
sessing straight edges, and old shapes.

Broader Impact and Future Work
After a new shape, compensated or uncompensated, has been printed,
recalibration can be performed by using different discrepancy measures
in the first step of our Bayesian methodology.

The broader impact of our procedure is smart 3D printing with the
potential of immediate practical application.

Our next steps are to extend the methodology to free-form and 3D shapes,
and incorporate the algorithms in our 3D printing deep learning app.

Acknowledgments
The work of Arman Sabbaghi was supported by the U.S. National Science Foundation under Grant No.

CMMI-1544841, and the work of Qiang Huang was supported by the U.S. National Science Foundation

under Grant No. CMMI-1544917, as part of the NSF/DHS/DOT/NASA/NIH Cyber-Physical Systems Pro-

gram. The work of Tirthankar Dasgupta was supported by the U.S. National Science Foundation under

Grant No. CMMI-1334178.


