Learning for Control of Synthetic and Cyborg PI’ s: Pieter Abbeel (PI), Ron Fearing (co-PI), Students: Nimbus Goehausen, Woody Hoburg,

Summary

Objective

Development of learning and adaptation capabilities that will enable operation of synthetic and cyborg insects in complicated environments, such as collapsed buildings.

Platforms

Year 1 Results

Cyborg beetle:

Setup, flight initiation, cessation

Synthetic crawler:

On-board electronics: video, gyro, accel.

Learning and adaptation:

Faster-learning policy gradient method

Year 2 Results

Cyborg beetle:

Wing-folding muscle, Conditioning

Synthetic crawler:

Complete crawler, Preliminary control
Learning and adaptation:
Risk-sensitive reinforcement learning

Synthetic Crawler

Risk-Sensitive RL (1)

Motivation

- Expected return is often optimized
- Reasons: Law of large numbers + Mathematical convenience
- Not necessarily good criterion when only getting to execute once
- Motivating example: consider buying tickets to fly to a very important meeting, for which it would be disastrous if you arrived late. Some flights arrive on time more often than
others, and these delays might be amplified if you miss others, and these delays might be amplified if you miss connecting flights. With these risks in mind, would you rather
take a route with an expected travel time of 13:48:09 and no take a route with an expected travel time of 13:48:09 and
further guarantees, would you choose a route that takes 13:53:28 on average with a standard deviation of 0:58:28, or would you prefer a route that takes less than 17:32:04 with 99\% probability?

Preliminaries

- Markov Decision Process
- State space S
- Action space A
- Stochastic dynamics
- Stochastic reward function R
- Return from time t onwards
$V^{t}(\pi)=\sum_{i=t}^{h-1} R^{i}\left(S_{i}, \pi^{i}\left(S_{i}\right), S_{i+1}\right)$
- "Optimize" $V(\pi):=V^{0}(\pi)$ (random var.)
- Traditionally: optimize expected return:
$\max _{\pi} E_{s}[V(\pi)] \quad$ where $\quad E_{s}[\diamond]:=E\left[\diamond \mid S_{0}=s\right]$

Insects in Uncertain Dynamic Environments
 Michel Maharbiz (co-PI)
 Amol Jadhav, Svet Kolev, Hirotaka Sato, Jie Tang

Cyborg Beetle

Goal

Create a reliable micro air vehicle (MAV) from a live insect Minimum control functions: On/Off Turning

Hardware

Implant Sites
 Optic lobe

Flight Initiation, Cessation
-Initiation success rate: $\mathbf{9 7 \%}$ ($\mathrm{N}=\mathbf{3 0)}$
-Cessation success rate: 100\% ($\mathrm{N}=100$)
-Mean response time, cessation: $\mathbf{7 3} \mathbf{~ m s}$ -Mean response time, initiation: $\mathbf{5 4 0} \mathbf{~ m s}$

Findings

The beetles missing wing folding muscles still folded and unfolded the wings but were losing steerage.

Train of the EMG spikes appeared only during the turn in the ipsilateral direction

-Ieft stimulation right stimulation

Risk-Sensitive RL (2)

Proposed Objective

- The Chernoff functional:
$\left.C_{s}^{\delta} \mid(\pi)\right]=\left\{\sup _{\theta=0} \theta^{-1}\left(\log \delta-\log E_{s}\left[e^{-\theta V(x)}\right]\right)\right.$
Theorem 1. Let X be a random variable which has a moment generaung function, that is $E \exp (\theta X)]$ is finite in a neighbor hood of $\theta=0$ and $\delta \in[0,1]$. Then, the Chernoff functional
of this random variable $C^{\delta}[X]$, is well defined and has the follown proerties: (i) $P\left(X \leq C^{\delta}[X]\right) \leq \delta$
(ii) $C^{1}[X]=E[X]$
(iii) $\lim _{\delta \rightarrow 0} C^{\delta}[X]=\inf \{x: P\{X \leq x\}>0\} \quad$ which could be $-\infty$
(iv) $A s \delta \rightarrow 1, \quad C^{\delta}[X] \approx E[X]-\sqrt{2 \log (1 / \delta) \operatorname{Var}[X]}$
(v) $C^{\delta}[X]=E[X]-\sqrt{2 \log (1 / \delta) \operatorname{Var}[X]} \quad$ if X is Gaussian.
(vi) $C^{\delta}[X]$ is a smooth, increasing function of δ.

Cumulant Generating Function Iteration

\qquad

Finding the Global Optimum

Experiment 1: Gridworld

$\mathrm{NE}, \mathrm{E}, \mathrm{SE}, \mathrm{S}, \mathrm{SW}, \mathrm{W}, \mathrm{NW}\}$, cause a move in the respective direction. $\mathrm{NE}, \mathrm{E}, \mathrm{SE}, \mathrm{S}, \mathrm{SW}, \mathrm{W}, \mathrm{NW}\}$, cause a move in the respective
In unmarked dquares, the actor's intention is exceuted with probability 9 . 9 . Eaca of the seven remaining actions might be
exceuted instead, each with probability 0.01 exceuted instead, each with probability 0.0 I . Scuares marked with
and $\$$ are absorbing states. The latter y ives a reward of 35 when and $\$$ are absorbing states. The latter gives a reward of 35 when
entered, and the former gives a penalty of 30 . Any other state
ir Travel Planning

We assume that, in the case of a missed connecting figgh due to delays, the airline will re-issue a ticket for the rou
of your choice leading to the original destination. We use historical data for February 2011, from the Office
of Airline Information, Burcau of Trans- portation Statistics (BTS), available at
In general, we observed that lowering δ will produce
policies with higher expected travel time, but lower policies with higher
standard deviation.

