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 The action classifier                         can be decomposed into: 
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The physical environment of a cyber-physical system is unboundedly complex, 

changing continuously in time and space.  An embodied cyber-physical system, 

embedded in the physical world, receives a high bandwidth stream of sensory 

information, and sends continuous control signals.  Traditional embedded systems 

restrict the environment or the attributes considered relevant, and depend on 

human supervision. 

 

To handle the complexity of unrestricted environments, future cyber-physical 

systems will need to be learning agents, learning the properties of sensors, 

effectors, and environment from their own experience, and adapting over time.  

Foundational concepts such as Space, Object, Action, etc., will be essential for 

abstracting and controlling the complexity of its world.   

 

Our previous work on the Spatial Semantic Hierarchy (SSH) [Kuipers, AIJ, 2000; 

Beeson, et al, IJRR, 2010] shows how multiple representations of space can bridge 

the gap between continuous interaction with the physical environment, and discrete 

symbolic descriptions that support effective planning. 

We are developing robot agents that use vision and manipulation to learn models 

of objects and actions at multiple levels of representation: 

 (1) learning to perceive objects in its environment; 

 (2) joint optimization of semantic constraints in vision; 

 (3) learning a hierarchy of increasingly skilled actions. 

Building on the OSH, and treating the surrounding environment as an "object", Tsai, Xu, Liu & Kuipers 

[ICCV, 2011] present a new method whereby an embodied agent using visual perception can 

efficiently create a model of a local indoor environment from its experience moving within it.  

 

Our method uses a single-image analysis, not to attempt to identify a single accurate model, but to 

propose a set of plausible hypotheses about the structure of the environment from an initial frame.  We 

then use data from subsequent frames to update a Bayesian posterior probability distribution over the 

set of hypotheses.  The likelihood function is efficiently computable by comparing the predicted 

location of point features on the environment model to their actual tracked locations in the image 

stream.   

The static background is 

just another object! 

The uncertainty in the agent’s sensory stream is factored into 

a collection of relatively compact representations: 

  static background model 

  pose trajectory of the agent 

  constant foreground object models 

  pose trajectories of foreground objects 

  any remaining noise 

• Overview 
• Single un-calibrated image 

• Improve object detection’s accuracy 

• Estimate camera pose and focal length 

• Recover 3D supporting planes 

• Locate object in 3D space 
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• Tools 
• Novel relationship between object‘s pose & location, and supporting plane 

• Layout priors 

• Experimental Results 

References 

Acknowledgements 

This material is based upon work supported by the National Science Foundation under Grants No. CPS-

0931474 and IIS-0713150. Any opinions, findings, and conclusions or recommendations expressed in this 

material are those of the authors and do not necessarily reflect the views of the National Science 

Foundation. 

• J. Liu, B. Kuipers, S. Savarese, Recognizing Human Actions by Attributes, Proceedings of the IEEE International 

Conference on Computer Vision and Pattern Recognition (CVPR), 2011   

• J. Liu, M. Shah, B. Kuipers, S. Savarese, Cross-View Action Recognition via View Knowledge Transfer, Proceedings of the 

IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2011. 

• Y. Bao, M. Sun & S. Savarese, Toward coherent object detection and scene layout understanding.  CVPR, 2010. 

• M. Sun, G. Bradsky, B. Xu & S. Savarese, Depth-encoded Hough voting for joint object detection and shape recovery.  

ECCV, 2010. 

• G. Tsai, C. Xu, J. Liu & B. Kuipers, Real-time indoor scene understanding using Bayesian filtering with motion cues.  ICCV, 

2011. 

• C. Xu & B. Kuipers, Towards the Object Semantic Hierarchy.  ICDL, 2010. 

Y
dX

Action class 

labels 

 • Rich visual temporal-

spatial structures cannot  

be well characterized by a 

single class label 
 

• For complex activities this 

process is too restrictive 

and reductive 
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Average Accuracy 

(%) 

raw-feature 51.83 

specified attributes 60.48 

raw-feature + specified attributes 63.60 

data-driven attributes 45.31 

raw-feature + all attributes 65.09 

• Experimental Results 

Indoor   

Outdoor   

Translation motion 

Arm pendulum-like motion 

Torso up-down motion 

Torso twist    

Holding racket  

√  

√  

√  

√ 

x 

x  

x  Jumping 

A
c
ti
v
it
y
  
d

a
ta

 s
e

t 

N
ie

b
le

s
 e

t 
a

l,
 2

0
1

0
 

The Object Semantic Hierarchy (OSH) [Xu & Kuipers, ICDL, 2010] shows how a 

learning agent can create a hierarchy of representations for visual perception of 

objects it interacts with.  The OSH "object abstraction" factors uncertainty in the 

sensor stream into object models and object trajectories. 

Our method runs in real time, and avoids the need for extensive prior training and the Manhattan-world 

assumption, which makes it more practical and efficient for an intelligent robot to understand its 

surroundings compared to most previous scene understanding methods.  Experimental results on a 

collection of indoor videos suggest that our method is capable of an unprecedented combination of 

accuracy and efficiency. 

Generate hypotheses 

Reconstruct 3D planar model 

Estimate camera pose 

Bayesian filtering 
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