

Learning to Walk – Optimal Gait Synthesis and Online Learning for Terrain-Aware Legged Locomotion

Aaron Ames (ME), Daniel Goldman (PHYS), Patricio Vela (ECE), Erik Verriest (ECE)

Georgia Institute of Technology

CPS GOAL: Advance CPS by more explicitly tying sensing, perception, and computing to the optimization and control of physical systems with variable and uncertain properties.

RESEARCH GOAL: Improve the perception and control of legged locomotion over granular media for the express purpose of achieving robust, adaptive, terrain-aware legged locomotion.

OBJECTIVES:

- Validated co-simulation platform for legged robot movement over granular media;
- Terrain-dependent, stabile gait generation and gait transition strategies via optimal control;
- Online, compute-constrained learning of granular interactions for adaptation and terrain classifications; and
- Validated contributions using experimental, granular-media testbeds
- Communicate value of STEM education.

Task2: Derive dynamics and gait controller, $\dot{x} = f\big(x(t), u(t)\big) + g_{ext}(x(t)) \, F_{ext}$ for multiple terrain types and for gait transitions.

Task 1: Experimentally derive granular force laws for modeling F_{ext} through controlled experiments

Task 3: Learn terrain models (F_{ext}) online. Classify terrain based on experienced models.

Task 4: Integrate and validate research contributions.

Modeling Locomotion over Granular Media

- Controlled experiments to identify interaction models
- Simulation tools at varying fidelity levels
- Diversified and highly controlled experimental testbeds

Hybrid Zero Dynamics and Modeling of Foot-Terrain Interaction

Zero dynamics surface: $\mathbf{Z}_{\alpha} = \{x \in \mathbb{R}^n \mid y_{\alpha}(x) = 0 \text{ and } \dot{y}_{\alpha} = 0\}$

Optimal Gait Transition based on (Gluskabi) Raccordation

MOTIVATION/ISSUES:

- Unlike solid ground, granular ground substrates do not provide a hard constraint.
- Reaction forces have variable properties.
- Yielding ground destabilizes bipedal legged locomotion.

Signal defined by:

$$T = \{x \in B_0 \mid \mathbf{Op} \ x = 0\}$$

Gluskabi extension defined by:

$$G = \{x \in B_0 \mid \mathbf{Op}^*Q\mathbf{Op} \ x = 0\}$$

Gluskabi raccordation results from optimization:

$$\arg\min_{x} \|\mathbf{Op} x\|_{Q} \text{ s.t.} \begin{cases} x = x^{0} & t \leq 0 \\ x = x^{1} & t \geq 0 \end{cases}$$

Defines transverse control u_{trans} to switch from one gait to another:

$$\dot{x} = f(x,z) + g(x,z)(u_a + u_{trans}) + g_{ext}(x,z)F_{ext}$$

STEM Education and Outreach

- Informal dissemination through web and media outlets
- Presentation of research results to public and visitors
- Integration of research through VIP.

Online Learning and Terrain Classification

$$\begin{split} \dot{x} &= f(x, u^*) + \left[\Delta(x, z, u) - \nu_{ad}\right] \\ &+ \hat{g}_{ext}(x, z) \left[\hat{F}_{ext} + \Delta_F(x, z)\right] \end{split}$$

Learn: unmodeled dynamics and state/gait-dependent uncertain external forces using Gaussian processes.

Classify: terrain type based on function approximation for ground reaction force.