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1 Overview

Fault tolerance is vital to ensuring the integrity and availability of safety critical systems. Fault tolerance
encompasses all of the architecture design and algorithms required to guarantee proper system operation
during both normal and failure conditions. The architecture design includes the number and placement
of sensors, actuators, and processors as well as the data buses required to interconnect all of the system
components. A fault tolerant system must also include the logic and algorithms for fault detection, fault
diagnosis, fault containment, and reconfiguration to continue operation in face of failures. In some systems,
we can ensure integrity by simply reverting to a back-up mode in the event of a failure. For example, in an
autoland system on an aircraft we can revert to a manual backup—the pilot. On the other hand, there are
critical systems that are absolutely essential and must always be operational; for instance, the flight control
electronics of an aircraft are essential to maintain controlled flight; here both the system integrity (the
functionality is correct) and availability (the functionality is there when it is needed) must be maintained.

The aircraft industry has many years of experience designing systems driven by extremely stringent safety
requirements. The system availability and integrity requirements for commercial flight control electronics
are typically on the order of no more than 10−9 catastrophic failures per flight hour [1, 2]. They have
converged to a design solution that is based almost exclusively on physical redundancy at all levels of the
design. For example, the Boeing 777 has 14 spoilers, 2 outboard ailerons, 2 flaperons, 2 elevators, one rudder
and leading/trailing edge flaps [4, 5]. Each of these surfaces is driven by two or more actuators (the rudder
surface is driven by 3 actuators) which are connected to different hydraulic systems. Moreover, the control
law software is implemented on three primary flight computing modules. Each computing module contains
three dissimilar processors with control law software compiled using dissimilar compilers. The inertial and
air data sensors have a similar level of redundancy.

The designs used in the aircraft industry achieve extraordinarily high levels of availability and integrity.
The use of physical redundancy, however, dramatically increases system size, complexity, weight, and power
consumption. Moreover, such systems are extremely expensive in terms of both the design and development,
as well as the unit production costs. There is an increasing demand for high-integrity, but at the same time
low cost, software enabled control in other transportation domains including aerospace (e.g. unihabited aerial
vehicles and fly-by-wire in lower end general aviation aircraft), automotive (e.g. autonomous full-authority
braking and adaptive cruise control). Moreover, the need for low-cost high-integrity solutions impacts non-
transportation applications such as medical devices (e.g. inplantable infusion pumps, cardiac phasing, and
neuro-stimulation). A basic design challenge is to bring high levels of reliability and integrity
to these other domains that can afford neither the cost nor the extra power, weight, and size
associated with physical redundancy.

The following research questions form important sub-problems that address this basic design challenge:

1. Analytical Redundancy: Can model-based and data-driven monitoring techniques be used to reduce
the reliance on physical redundancy? Flight control systems for commercial aircraft use disimilar
components, e.g. processors from different manufacturers. The use of disimilar components is meant
to avoid a common design flaw in a single component. We hypothesize that algorithmic disimilarity
provided by model-based and data-driven techniques may also provide benefit in detecting different
classes of failures.
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2. Software Fault Detection: Can advances in model-based software development can be applied for
fault detection of software and hardware components of the system? We hypothesize that using the
artifacts from a model-based development process as well as formalized software and safety require-
ments [3] as models for fault detection will be an effective approach.

3. Validation and Verification: How can the reliability of new architectures be certified? There are
two important issues to this question. First, analytically redundant detection algorithms introduce
new fault modes in the cyber-domain in addition to existing fault modes in the components (phys-
ical domain). For example, the algorithm could incorrectly identify faults. Thus new design tools
are required to assess the reliability of systems that rely on analyitcal redundancy. Second, complex
systems are by necessity hierarchically organized; they are decomposed into subsystems for intellectual
control, for enabling compositional verification and validation, as well as for the ability to have the
subsystems created by separate development organizations or external contractors for subsequent inte-
gration into the system as a whole. Such systems are typically assembled from components purchased
from subcontractors. Certifying the entire system requires addressing the assurance of interconnected
black-box components. We hypothesize that this can be done through (1) compositional reasoning by
determining what a black-box component must (and must not) do to operate safely in its intended
environment, (2) rigorous metric-driven testing that can be objectively evaluated to determine weather
or not is is adequate to thoroughly exercise the required component behavior as well as the delivered
component itself, and (3) symbolic execution of the delivered object code, that is, automatic discovery
of behaviors of the object code and construction of tests to exercise these behaviors.
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