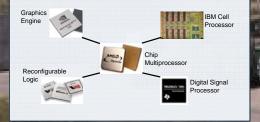
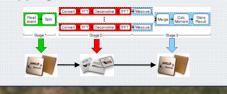
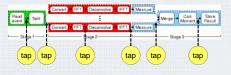

Low-Impact Monitoring of Streaming Systems

Roger D. Chamberlain and Ron K. Cytron


Department of Computer Science and Engineering, Washington University in St. Louis


Streaming Data Computation

Architecturally-Diverse Computers



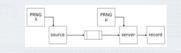
Mapping to Diverse Resources

Where is the Performance Bottleneck in an Application?

To understand performance, we would like to collect time stamped data traces at multiple taps

- 1. Simulation Models
- Excellent observability
- Concerns with fidelity of model
- Slow execution of simulation

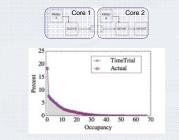
2. Instrumented Execution


- Requires implementation be complete
- Limited observability
- Instrumentation can impact performance
- How can we observe the real execution without perturbing its performance profile?
- 1. Dedicate compute resources to the measurement system
- 2. Use user-selected data compression to enable low-impact monitoring

TimeTrial: Measuring Performance

TimeTrial Agents

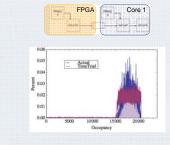
Deployed on each compute resource
Monitor traces from taps
Aggregate trace data into summary statistics
Periodically report results to server
Server aggregates globally and displays results


Micro-benchmark Application

Designed to mimic M/M/1 queuing system
Application records queue occupancy

• Source and server can be allocated to distinct compute resources (e.g., proc. core or FPGA)

Measuring Queue Occupancy



Excellent agreement with actual occupancy

Monitoring Virtual Queues

Measure inter-insertion and inter-departure times

•Use to drive discrete-event simulation of queue

Sanity check with sub-queue occupancies

Research Issues

Construct efficient TimeTrial agents

- FPGA [SoCC '09], CPU [ASAP '11], GPU • Design performance query language [ERSA '10]
- Specify measurements, assertions [HPCC'11]
- Compiler to generate low-impact instrumentation
 Optimize data aggregation on each resource
 Minimize communication between agents
- Unify time across resources [SAAHPC '10a]
- Understanding performance
 - Create performance models
 - Calibrate and validate models [SAAHPC '10b]