MIST: Systematic Analysis of Microarchitectural
Information Leakage on Mobile Platforms

Pls: Thomas Eisenbarth, Berk Sunar
Worcester Polytechnic Institute, Vernam Group

Mobile Computing

* Mobile computing is everywhere:
~ Smartphones, Wearables, loTs, Set-top Boxes...

| / | o

A
D

Multiple 3rd party apps run on the same
platform, sharing the underlying hardware [1]

Privacy and security sensitive information

dano=0ID

stored and processed on devices; passwords, mobile banking,

health data, e-mails, photos u RM

« Sandboxing is required and enforced by
the operating system; Android and 10S [2,3]

« Compute power and battery life are biggest

challenges; require heavy optimizations

Sisuneg :

b‘ Google play ',
Machine Learning for Profiling
Applying Machine Learning technigues to classify cache
patterns of different benchmark apps on the cloud
Detecting ping requests via the Last Level Cache reveals and
identifies co-located VMs
SVM-based classifier is trained on many different apps:

The success rate of classifying 40 different apps is 60% on
Amazon EC2, using cross-validation

Samsung

Knax

Mobile QoS Attack

Degrade the performance of a victim app up to 90%
Background service detects when the victim app is in use
Uses combination of microarchitectural features and logical
channel leakages

Is stealthy: CPU load of the attacker does not exceed 10%
Currently neither detected by Google Play Store nor the top
malware scanners in the market

110

90 "Rs00 ¥R 6:00

Degrader
80 Please select the app that you

would like to slowdown.

This is a HIGHLY experimental app.

=
=

It can degrade the performance o
another app running on the device

using sophisticated architectura
bottlenecks.

16 12 no 32 v7-A

Galaxy 52

412 Exynos4  Cortex-A9 2

60
50

Use with caution!

Success Rate (%)

Snapdragon

exus 5 5.11 300

Krait 400 4 226 no 32

AD We are not responsible for any
damage that might occur as a result o
using this app.

23
22

30

e B
PAragon - c3 g oy

808 Cortex-A57

20

16 442 14818 yes

10—

0

o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18

Test Number

19 20 21 22 23 24 25

242 16&2.15  yes*

Crypto Library Primitives

Microarchitectural attacks exploit code design mistakes
Security critical code should not feature secret dependent
execution flow and memory accesses

Creation of a methodology using cache traces and mutual
Information to validate the sanity of cryptographic code
Evaluated the sanity of 8 well known cryptographic libraries
(e.g WolfSSI, OpenSSl or Intel IPP) of AES, RSA and ECC
The analysis shows that 50% of the implementations leak
Information

Patches have been proposed and are currently being adopted

NO LEAKAGE CASE

Future Work

Reverse engineering of cache

coherency protocols of various

ARM processors

Applying the ML techniques to

recover sensitive information

with low sample rate and high

accuracy

Investigate various mobile

platforms like smartphones,

wearables, set-top boxes and
loTs with ARM processors

Lo PP RSA nstructons. _» Software countermeasures to

ol ] prevent the leakage of apps or to

i O SRR O TR develop detection techniques

. | using ML techniques

04 e © o o°
1l e ° °
0.2 | e

P N S T PR PP PR TN
0 10 20 30 40 50 60 70 80 90 100

Decryption key number

Machine
Learning

LGNS
=5

Always

I | ] | ]
i ®
Cache line 1 used data IPP RSA table i

Cache line 2 RO

LEAKAGE CASE

Cache line 1 RO

Mutual Information (bits)

Cache line 2 R1

4 .
Bibliography

[1] Number of available applications in the Google Playstore from December 2009 to September 2016.

[2] iIOS App Sandbox in Depth

[3] Android Security

Interested In meeting the PIs? Attach post-it note below!

The 3" NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting
January 9-11, 2017/
Arlington, Virginia



https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://developer.apple.com/library/prerelease/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AppSandboxInDepth/AppSandboxInDepth.html
https://source.android.com/security/

