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Mobile Computing

* Mobile computing is everywhere:
~ Smartphones, Wearables, loTs, Set-top Boxes...
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Multiple 3rd party apps run on the same
platform, sharing the underlying hardware [1]

Privacy and security sensitive information
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stored and processed on devices; passwords, mobile banking,

health data, e-mails, photos u RM

« Sandboxing is required and enforced by
the operating system; Android and 10S [2,3]

« Compute power and battery life are biggest

challenges; require heavy optimizations
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Machine Learning for Profiling
Applying Machine Learning technigues to classify cache
patterns of different benchmark apps on the cloud
Detecting ping requests via the Last Level Cache reveals and
identifies co-located VMs
SVM-based classifier is trained on many different apps:

The success rate of classifying 40 different apps is 60% on
Amazon EC2, using cross-validation
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Mobile QoS Attack

Degrade the performance of a victim app up to 90%
Background service detects when the victim app is in use
Uses combination of microarchitectural features and logical
channel leakages

Is stealthy: CPU load of the attacker does not exceed 10%
Currently neither detected by Google Play Store nor the top
malware scanners in the market
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It can degrade the performance o
another app running on the device

using sophisticated architectura
bottlenecks.
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Crypto Library Primitives

Microarchitectural attacks exploit code design mistakes
Security critical code should not feature secret dependent
execution flow and memory accesses

Creation of a methodology using cache traces and mutual
Information to validate the sanity of cryptographic code
Evaluated the sanity of 8 well known cryptographic libraries
(e.g WolfSSI, OpenSSl or Intel IPP) of AES, RSA and ECC
The analysis shows that 50% of the implementations leak
Information

Patches have been proposed and are currently being adopted

NO LEAKAGE CASE

Future Work

Reverse engineering of cache

coherency protocols of various

ARM processors

Applying the ML techniques to

recover sensitive information

with low sample rate and high

accuracy

Investigate various mobile

platforms like smartphones,

wearables, set-top boxes and
loTs with ARM processors
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