
Joseph Loyall, Shane Clark, Partha Pal, Rick Schantz {jloyall, sclark, ppal, schantz}@bbn.com

Measuring the Complexity and Adaptation of Transportation CPS

BBN Technologies

The complexity of modern military, aerospace, and other systems and systems of systems has skyrocket-

ed in recent years. These Cyber-Physical Systems (CPSs), including transportation and aeronautical sys-

tems, comprise major physical components that can no longer function properly without integrated cyber

components (such as engine control systems and communication buses) [1, 2, 3 4]. The complexity of

CPSs and their increasing reliance on software control of mechanical systems has contributed to a long

list of disasters [5, 6], including ones that have led to catastrophic loss of life or property [7, 8, 9, 10].

Managing the growth in complexity in CPSs while building CPSs that can adapt over a long lifetime

remains a challenge for designers, developers and maintainers. Transportation systems have longer life-

times than usual for software replacement. Frequent software patches and upgrades – necessitated by

discovered bugs or vulnerabilities – are needed over vehicle lifetimes that span several years or decades.

Furthermore, code (as well as mechanical parts) is often reused and retargeted from one vehicle design

to another. While mechanical engineers understand mechanical interactions and software engineers un-

derstand software interactions, the interplay between software and mechanical components in CPSs is

not as well understood and controlled. A famous example is the Ariane 5 rocket, which reused inertial

reference system code from the Ariane 4 rocket without accounting for the faster initial acceleration and

horizontal velocity buildup of the Ariane 5 rocket, which resulted in an integer overflow (without an ex-

ception check that was removed for performance), as shown in Figure 1 [11]. The rocket self-destructed

approximately 37 seconds after launch. Nearly two decades have passed since this disaster, and (in-

creasingly more complex) automotive and aeronautical CPSs still continue to be plagued by highly pub-

licized and costly recalls

and delays [12, 13, 14,

15, 16].

Despite improved

tools for the design and

development of the me-

chanical, electronic, and

software components of

modern CPSs, we con-

tinue to build cyber

physical systems of sys-

tems without an adequate

understanding of the fi-

nal complexity or how

difficult it will be to

modify the system for

future needs. A key rea-

son for this lack of un-

derstanding is that there

are few ways to measure

the complexity or adapt-

ability of CPSs. As a re-

sult, CPSs today are in-

Figure 1. A software error due to code reuse led to physical destruction of the Ariane 5
rocket.

Joseph Loyall, Shane Clark, Partha Pal, Rick Schantz {jloyall, sclark, ppal, schantz}@bbn.com

creasingly complex and lack adaptability, negatively impacting the effectiveness, lifecycle cost, and

maintainability of the systems. These shortcomings are particularly alarming in the transportation sector

where software bugs can lead almost directly to human injury or death.

Some complexity metrics do exist for software only, including McCabe’s metrics (e.g., Cyclomatic

Complexity), Halstead’s metrics (e.g., source lines of code), and coupling and cohesion. Similarly, met-

rics exist for the physical aspects, such as Size, Weight, and Power (SWAP). However, the community

is lacking in complexity-centric and adaptability-centric metrics that encompass and capture the inter-

connections, dependencies, and combined aspects of the cyber and the physical components throughout

the system’s lifecycle. The lack of appropriate metrics means there is little support for system designers

and developers to compare competing designs, safely reuse cyber components in new physical systems,

modify CPSs, and make design tradeoffs in critical areas affecting system success and acceptability.

This shortcoming motivates new research into appropriate metrics integrated into design and mainte-

nance environments and processes. We suggest that there are two classes of metrics that require research

and development to support the design, development, and maintenance of transportation CPSs, namely

complexity and adaptability metrics.

Complexity metrics – The main purpose of these metrics is to assess the extent to which unforeseen

situations can arise in a CPS. The more complex a system is, the more likely that some condition that

might arise during its lifecycle has not been thoroughly tested, vetted, controlled, or compensated for.

The key for complexity metrics is that they are comparative within a single CPS instance. That is, while

it is not realistic to hope for a complexity metric that is an absolute judge of the worth of a specific sys-

tem (e.g., a system might be less complex than another because it is much less feature rich or capable), it

is worthwhile to determine whether a change to a CPS or a particular design or implementation choice

makes the system more or less complex, and therefore more or less maintainable over its lifecycle.

Important factors that could be incorporated into useful and general complexity metrics include, but

are not limited to, the following:

 The degree to which subsystems are interdependent, indicating the likelihood that changes or failures

in one can affect others.

 The degree to which the logic and mechanics of a subsystem are well organized, understood, docu-

mented, and tested.

 The degree of resource contention between system components, where resources can include the tra-

ditional cyber resources of CPU, memory, and bandwidth, but also physical resources such as gross

weight, power, space, and thermal dissipation, and lifecycle resources, such as maintenance dollars

(e.g., for replacement parts), hours (e.g., time to upgrade, fix, and replace), and manpower (e.g.,

amount of manual labor involved in maintenance).

Adaptability metrics – The main purpose of these metrics is to assess the ability of a CPS to adapt to

future changes. A CPS could be low complexity, but very rigid, requiring complete redesign and rede-

velopment for each new feature or new version. An adaptable CPS, in contrast, would accommodate up-

grades and maintenance without major cost or effort, facilitate reconfiguration of components for reuse

across platforms, and reduce obsolescence by enabling individual component upgrades. Likewise, sys-

tems that are runtime adaptable handle wider ranges of operating conditions, new or unforeseen interac-

tions and interconnections, failure cases inclusive of malicious intent, extremes of environmental condi-

tions, changes in their patterns of use, and many other aspects of an unknown future. Improved adapta-

bility leads to less downtime, longer lifecycles, more efficient usage, and safer, streamlined upgrades.

These complexity and adaptability metrics need to be incorporated into design, development, and

maintenance environments and processes, so that design decisions, implementation tradeoffs, and

maintenance choices can be evaluated with respect to their ability to reduce (or at least not increase) the

Joseph Loyall, Shane Clark, Partha Pal, Rick Schantz {jloyall, sclark, ppal, schantz}@bbn.com

complexity of the system and maintain or improve the adaptability of the system. In order to achieve this

vision, the metrics must have the following attributes:

 Usable within existing or emerging CPS tools and processes. That is, the metrics should encompass

relevant characteristics of CPSs to drive design, development, and maintenance decisions and sup-

port integration into the systems and tools used by designers, developers, and maintainers.

 Observable and computable, i.e., it should be possible to calculate or estimate the metrics for a wide

range of systems at various stages of development while the system is being conceived, designed,

developed, and maintained.

 Validatable on data from historical and current real CPSs, i.e., it should be possible to calculate the

metrics using information from prior or current existing systems, such as those referenced above,

toward experiments validating a correlation between lower complexity and higher adaptability with

longer lifespans, lower lifecycle costs, and fewer documented problems.

The definition, design, and adoption of such metrics is a challenging, high-payoff area of research.

The current state of the art for evaluating complexity and adaptability typically focuses on the cyber

(i.e., software) aspects or physical aspects, but not both and their interplay. Many existing metrics are

easily computable, but overly simplistic and consider only a limited set of system characteristics. Others

are more comprehensive, but not computable in general. The depth of this problem is underscored by the

fact that there are still ongoing debates over the meaning and scope of complexity and adaptability in

cyber-physical systems today. Meaningful debates about which factors have the greatest impact on com-

plexity and adaptability, or which metrics are appropriate in different contexts have yet to begin in ear-

nest.

References
1. Mark V. Arena, Obaid Younossi, et al., Why Has the Cost of Fixed-Wing Aircraft Risen? Report No. MG696, RAND

Corporation (2008).

2. Paul G. Kaminski et al., Pre-Milestone A and Early-Phase Systems Engineering, National Research Council (2008).

3. Lee, E.A.; , "Cyber Physical Systems: Design Challenges," Object Oriented Real-Time Distributed Computing

(ISORC), 2008 11th IEEE International Symposium on , vol., no., pp.363-369, 5-7 May 2008

4. Kurt Rohloff, Partha Pal, Michael Atighetchi, Richard Schantz, Kishor Trivedi and Christos Cassandras. “Approaches

to Modeling and Simulation for Dynamic, Distributed Cyber-Physical Systems.” Workshop on Grand Challenges in

Modeling, Simulation, and Analysis for Homeland Security (MSAHS-2010), Mar 2010.

5. Glass, R. Software Runaways: Monumental Software Disasters, Prentice Hall PTR, 1997.

6. Neumann, P. “First Six Months of the Forum in Retrospect; Updated Disaster List,” The Risks Digest, 2(1), Feb 1986.

7. Leveson, N, Turner, C. “An Investigation of the Therac-25 Accidents,” IEEE Computer, 26(7), Jul 1993, pp. 18-41.

8. US Government Accountability Office, Patriot Missile Defense: Software Problem Led to System Failure at Dhahran,

Saudi Arabia, GAO/IMTEC-92-26, Feb 4, 1992.

9. Gleick, J. “A Bug and a Crash: Sometimes a Bug Is More Than a Nuisance,” The NYTimes Magazine, Dec 1, 1996.

10. ARIANE 5, Flight 501 Failure, Report by the Inquiry Board, 1996,

http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html.

11. Buschmann, F., “The Pragmatic Architect – To Boldly Go Where No One Has Gone Before,” IEEE Software, 29(1),

Jan/Feb 2012, pp. 23-25.

12. Ostrower, J., Pasztor, A., “Dreamliner’s Other Issues Draw Attention,” Wall Street Journal, May 20, 2013.

13. Charette, R., “Honda Recalls 936,000 More Vehicles for Electrical and Software Fixes,” IEEE Spectrum, Sep 7, 2011.

14. “Tech. View: Cars and Software Bugs,” Babbage Science and Technology Blog, The Economist, May 16, 2010.

15. Manjoo, F., “I’m Sorry, Dave, I’m Afraid I Can’t Make a U-Turn, Should We Be Worried That Our Cars Are Con-

trolled By Software?” Slate, Feb 16, 2010.

16. Hyde, J., “Key Car Quality Study Ranks Software Bugs As Most Common Complaint, Knocks Ford Again,”

http://news.yahoo.com/blogs/motoramic/key-car-quality-study-ranks-software-bugs-most-170243393.html, Jun 20,

2012.

