

Methods for Network-Enabled Embedded Monitoring and Control for High-Performance Buildings

Acknowledgement: funded by NSF grant CNS-0931885

Prabir Barooah (UF)
Prashant G. Mehta & Sean Meyn (UIUC), Luca Carloni (Columbia U)
Alberto Speranzon (UTRC)

Team: UF, UIUC, Columbia, UTC

Univ. of Florida

Prabir Barooah

UI Urbana-Champaign

Prashant Mehta

Sean Meyn

Columbia

Luca Carloni

United Tech. Res. Center

Alberto Speranzon

Siddharth Goyal Chenda Liao

Feb 5, 2010

Kick-off meeting, **East Hartford**

Kun Deng

March 23, 2010

Adam Tilton

Yu Sun

Marcin Szczodrak

project awarded

Buildings and Energy (U.S.)

- > 71% of electricity*, 39% of total energy use*, 38% of CO2 emissions*
- > commercial / residential ~ 1, but growing

** based on an assumed 55% reduction in HVAC energy use through improved HVAC equipment and controls [source: "U.S. Building-Sector Energy Efficiency Potential", LBNL-1096E, Brown et. al. 2008]

Gaps between design and actual performance

Inefficiency in building HVAC

Sources of inefficiency:

- controls (open-loop schedule + local feedback)
- * HVAC system design (worst case "load")

- Physics:
 - thermal, contaminant transport, occupants,
- Cyber:
 - thousands of sensors (temp, flow rate, status, CO2, video...)
 - control logics at several scales (zone-level, building-level)

attributes:

- time-varying, building-specific
- complex interconnection

Optimal control?

"minimize energy use while maintaining comfort and IAQ"

weather model

Thermal+ IAQ dynamics model

occupancy model

occupancy model

Design and Implementation

"minimize energy use while maintaining comfort and IAQ"

weather model

Thermal+ IAQ occupancy model

occupancy model

occupancy model

Design and Implementation

weather model

Thermal+ IAQ min E subj. to

learning algorithms

"minimize energy use while maintaining comfort and IAQ"

optimizer subj. to

Design and Implementation

"minimize energy use while maintaining comfort and IAQ"

control and estimation computations

stream processing

What to compute
Where to compute?
centralized / distributed
What to communicate, how?

wired/wireless

Processing Elements

Communication Elements

Building physical constraints

Integrated buildings: networked CPS

2. Occupancy (modeling, estimation,..)

measurements + model of dynamics + (computation) => estimation and prediction

E1. Meyn, Surana, Lin, Oggianu, Narayanan and Frewen, IEEE Conference on Decision and Control, 2009

MAE-B @UF

Publications:

- 1. C. Liao and P. Barooah, American Control Conference, July 2010
- 2. C. Liao and P. Barooah, Journal of Building Performance Simulation (in review)

3. Thermal and IAQ dynamics

1 zone - 8 states

4 zones - 42 states

66 zones - 880 states

••••

- standard practice, well validated

- lumped model, but ...

Need further reduction of model order for real-time application

Structure preserving model reduction methods

- > aggregation into a smaller RC-network through a Markov chain
- > (on-line adaption of aggregate R,C values)
- > extension into bilinear form

Publication

K. Deng, P. Barooah, P. G. Mehta, and S. P. Meyn. Building Thermal Model Reduction via Aggregation of States. American Control Conf., July 2010

6. Integrated CPS design environment

Bridging the gap from specification to implementation: Synthesis-based Design Methodology

Input

- Application Task Specification •
- **Physical Constraints**
- Libraries of processing and communication elements

Design steps

- Task Clustering
- **Communication Synthesis**
- **Computation Synthesis**

Output

- Choice of processing elements
- Mapping of actors to processing elements
- Implementation of the interconnection network

Summary

- Buildings are the largest consumers of energy
- Buildings are complex cyber physical systems
- Computation, communication and control
- Adaptation to time-variations is crucial
- Large (un-utilized) data streams

Pugh Hall (UF campus)

- 53,000 sq. ft., LEED Silver
- 3 AHUs, 66 VAV boxes,
- > 1000 "points"
- ▶ Value of information: what to measure, what to model?
- ▶ Appropriate CPS performance metrics?
- ▶Information management and longevity?