

Mixed Physical and Cyber Clocks for CPS

Dionisio de Niz SEI – Carnegie Mellon

New Clockwork for CPS Workshop Oct 25-26 2012

Software Engineering Institute Carnegie Mellon

© 2012 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-000082

Role of clocks in CPS

Order events across distributed processes

Synchronize cyber and physical processes

Synchronize different cyber processes

Synchronize different physical processes

Carnegie Mellon

Synchronize cyber processes with physical processes

Traditionally done by fixing a "sampling" period

Drawbacks:

Variation in the evolution of physical process can be large $(X_1 >> X_2)$ Need to force minimum period

Pessimistic resource utilization for guaranteed deadlines

Synchronize cyber processes with physical processes

Approach: Let the physical process drive the computation

Alternative approaches: Event-based control Self-triggered control

oftware Engineering Institute

Improved resource utilization for guaranteed deadlines

Carnegie Mellon

Synchronizing different cyber processes

Using a "common" clock

- Common reference (e.g. GPS)
- Synchronized local clocks (e.g. NTP)
- Logical clocks

Reliability needs to be taken into account

- Loss of satellite signals (GPS)
- Synchronization message loss (NTP)
- Synchronization message delays (logical clocks)

Synchronized cyber-clock accuracy

From the loss of the common reference every time we miss a sync message the sync error increases

Common physical processes in CPS

In a CPS cyber processes may observe a common physical process (physical variable)

- AC cycle in the smart grid
- Crankshaft angle in an engine

Combining sync clocks with physical variable

Physical process with variable cycles

In CPS time is frequently a proxy for physical variable Hence, cyber processes only require sync with physical variable

E.g. open/close valves sync with fuel injection

Logical (vector) clocks can also complement sync

But they are also sensitive to "missed" syncs

Software Engineering Institute Carnegie Mellon

Mattern related vector clocks to Minkowski's spacetime

In CPS "x" can also be related to a physical variable (and back to time)

Mixed Physical and Cyber Clocks

¹PV: physical variable

Limitations of Logical Clock

Software Engineering Institute | Carnegie Mellon

© 2012 Carnegie Mellon University

Physical processes also "receive" messages (actuation)

Logical + Physical Clock + Real-time clock

Preserving time properties¹

- 1. Transitivity
- Mixed vectors allows transitivity across domains (logical, physical, real-time)
- But can also exhibits non-transitive concurrency
- 2. Irreflexibility
- 3. Linearity
- 4. Eternity
- 5. Density
 - Improved but variable density

¹The Logic of Time. van Benthem.

Sync (couple) different physical processes

Use cyber-clocks to create a virtual process Safety

- Airplane collision avoidance maneuvers
- Cooperative collision warning system¹
- Electronic Stability Control

Carnegie Mellon

Clock failures can jeopardize coupling

oftware Engineering Institute

1California PATHResearch. Sengupta et al.

Robustness of Mixed Physical and Cyber Clocks

Software Engineering Institute Carm

Carnegie Mellon

Using mixed clocks: robust agreement

Co-relate cyber agreement with physical agreement

Prevent false faults

Acknowledge cyber clock <u>timeout</u> but observed physical change
Physical model allows the detection "physical clock" advance

False agreement

- Collision avoidance:
 - Agreed roundabout trajectory
 - But no trajectory correction
 - Physical clock timeout: need physical model of expected change

Concluding Remarks

CPS allows us to revisit the concept of time

- Implementation mechanisms to improve robustness
- Application requirements

Challenges combining physical, cyber, and logical clocks

- Variable density
- Requires building consistent transitivity across domains

Improves synchronization across different types of processes

- Cyber to physical
- Physical to physical

