
Models of Time for Safety Critical Systems

Partial vs. Total Order – Polychronous vs. Synchronous

Sandeep K. Shukla

Electrical and Computer Engineering Department

Virginia Tech

Blacksburg, VA 24061

Email: shukla@vt.edu

In safety critical systems, accuracy of time is important if the activities of the system are time driven, and

the notion of synchrony is based on the accuracy of time. For example, under a GPS based timing, the

nodes of a distributed system may agree on the current time to sub-microseconds accuracy and the

system can span a wide geographical region – whereas, a system with IEEE 1588 based time

synchronization, the same accuracy of synchronization can be obtained but is spatially limited to a few

subnets.

The synchronization of clocks for such systems and protocols come at the cost of an overhead of running

expensive synchronization algorithms. However, in recent times, systems dependent on precise clock

synchronization are vulnerable to cyber attacks. GPS spoofing, malicious disruption of IEEE 1588 based

timing by message spoofing, and other kinds of intermediary based attacks etc., can easily make the

system nodes perceive time wildly differently. Therefore, even if we are ready to bear the cost of time

synchronization, we cannot afford to render our safety-critical systems so tightly dependent on timing

accuracy without adequate cyber security overheads.

Time-triggered systems that depend on accurate agreement of time are not necessarily appropriate when

cyber defenses are weak, or impractical. For example, sensor networks in a war zone, or cyber physical

systems such as a nuclear power plant, can be target of timing disruption based attacks. The recent

incidents with the Stuxnet worm showed how easily it is possible to breach the security of such systems.

It is also easily conceivable that attacks on time synchronization mechanism in such systems can run

havoc on such systems.

In the context of embedded real-time systems this problem is not a new one, and models of time have

been a subject of intense research in the past two decades. A distributed system endowed with strong

clock synchronization mechanisms can view time as an approximately totally ordered (possibly infinite)

set of instants. As long as the required time resolution is within the accuracy provided by the

synchronization mechanism, this could work. In absence of clock drifting, poorly designed clock

synchronization protocols, or cyber attacks on clock synchronization, distributed algorithms and protocols

can be either time driven, or can be made simpler by assuming a linear or total order of time. Proving

correctness is also simpler (not necessarily trivial).

Unfortunately, as argued earlier, assumptions of uncompromised clock synchronization, no fault in the

system nodes or links etc, are often not valid. Thus a totally ordered time is also not necessarily a safe

assumption for safety-critical system designs.

On the other hand, today’s systems with multi-tasking, multi-threading, and multi-core precepts have

naturally multiple notions of time. For example, two threads T1 and T2 may run at different speeds, and

may run in parallel intermittently synchronizing on various events. The time inside each thread could be

viewed as totally ordered, but since the events happening in one thread could arbitrarily concur against

events in the other, except at the thread synchronization points, the time in the other thread is not

necessarily the same total order as the first one.

mailto:shukla@vt.edu

This gives us the notion of polychronous time. Thus time is no longer unique or the same at all

concurrently running entities, but they have their own totally ordered instants as their local times, and the

instants in these local time sets are partially ordered with respect the instants in another thread’s local

time.

The origin of this partial order can be easily understood with reference to Lamport’s famous paper titled

“Time, Clocks, and the Ordering of Events in a Distributed System”. Since the threads interact via

message passing or synchronizing on shared resources, the two local times need to have some notion of

ordering at certain instants, but for most part the two threads run asynchronous to each other until such

points where such exchanges or synchronizations take place. Upon finishing such required interactions,

they again take asynchronous paths until the next synchronization instants arrive.

In a simple minded distributed system, one could schedule a step by step synchronous execution of the

threads, so that they are always in lock step. Such a system preserves a total order of time across all the

local times. In other words, this is the simplest way to create a single notion of a totally ordered global

time. But this amounts to barrier synchronization at every step – which degrades performance

unnecessarily. Also, this requires a global coordinator – which is akin to global clock synchronization,

and suffers from the same vulnerabilities and overheads.

Thus polychronous notion of time with its partial order over the union of all local times, frees us from the

requirements of strong clock synchronization, and work at maximal performance in between

synchronization points. The speeds of the concurrent entities do not need to be controlled except when it

needs to block and wait for another thread to come to their mutual synchronization event.

The disadvantage of this model of time is that it makes it harder to program threads that are self-timed.

Proving correctness of such systems is also harder. This is because a partial order can be linearized in in

possibly exponential number of distinct ways. Proving that all possible sequentializations of the system

lead to the correct result might lead to an exponential number of possibilities to check. Also, if instead of

sequential consistency, another notion of correctness adopted, such as weak consistency, that is even

harder. In the efficient but simpler fully time synchronized distributed system every event of the system

is uniquely identified with a unique point in a totally ordered time line making it easier to prove

correctness.

Therefore, in order to free the programming model from synchronous timing model, and making systems

robust to clock synchronization failure based attacks, we have been advocating polychronous model of

computation for concurrent systems. However, we do not advocate that programmers design programs

against this model manually, or prove correctness themselves. We propose a dataflow model of

computation which describes only the intended computation as a set of concurrent dataflow, and a

program synthesis technique synthesizes multi-threaded code from such specifications. The generated

code does not depend on clock synchronization, and each thread has local notion of time which are totally

ordered themselves, and partially ordered globally. The correctness proof obligation is no longer with the

implementer but with the modeler who would prove the properties on the concurrent dataflow model. The

program synthesis engine of course has to be proven correct in order to claim correctness of the generated

code from the model.

In this position paper, we will elaborate on why we consider this polychronous timing model to be

advantageous for security and safety critical systems describe our specification formalism, derive the

algorithms for code synthesis by analyzing the dependencies, concurrences, and pre-orders. We will

illustrate with examples how this model of time makes it simpler to specify, and how code is synthesized.

http://cnlab.kaist.ac.kr/~ikjun/data/Course_work/CS642-Distributed_Systems/papers/lamport1978.pdf

Bio: Sandeep K. Shukla is a professor of Electrical and Computer Engineering at Virginia Tech. He has

published more than 200 conference papers, book chapters, and journal articles. He also co-edited or co-

authored nine books. He is a recipient of the PECASE award, NSF CAREER award, Humboldt

foundation’s Bessel award, a best paper award etc. He is an IEEE computer society distinguished visitor

and an ACM visiting speaker. He is currently working with the US Air Force to develop techniques and

tools for multi-threaded code synthesis from polychronous specifications. Model of time in computational

model is one of his major topics of interest.

