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INTRODUCTION 

OBJECTIVE 

•  Up to 20% of the total installed generation capacity in the United 
States is dedicated to meeting peak loads, but is in use only 5% 
of the time. 

•  The building sector contributes up to 75% of all electricity usage 
and is a significantly larger contributor, proportionately, to peak 
demand. 

•  Demand-side management (DSM) techniques, together with 
the integration of effective energy storage can play essential 
roles in increasing the efficiency and reliability of the grid system. 

•  Mature technologies in large-scale CPS applications, such as 
in modern commercial buildings that have building automation 
systems and electricity storage, can potentially enable more 
efficient grids and distributed generation. 

We envision that, “Demand peaks and associated grid stress, 
electricity unit cost, and carbon emissions can be effectively 
reduced, by investigating a novel CPS Demand-Side 
Management framework that integrates battery storage within an 
advanced Building Automation Systems”. 

APPROACH & INTELLECTUAL MERIT 

To address this fundamental objective, we propose a novel 
Predictive CPS-based Demand Side Management framework 

•  It utilizes intelligent technologies and advanced mixed-integer 
optimization to control the trade-off between energy consumption 
and cost vs. occupant's comfort level. 

•  It minimizes the need for human interaction in building control. 

•  It will use a powerful model selection approach to select the best 
statistical learning models to represent the next day’s energy 
consumption (load profile). 

•  It mitigates the uncertainties in the return. 

•  It will utilize the adaptive model refinement approach to increase 
the fidelity of statistical learning models when strategically updated 
data is available. 

SIGNIFICANCE & IMPACT 
•  Successful outcome of the proposed framework will promote greater 

and informed adoption of related/upcoming green technologies 
(such RE generation, and EVs) in large scale CPS applications. 

•  Successful CPS framework can pass the ~30% barrier in load profile 
reduction reached by commercially available BAS. 

•  Performance of the control framework will be calibrated to improve 
storage lifetime and cost of ownership 

PASSIVE DSM OPTIMIZATION 
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REARL-TIME DSM OPTIMIZATION 

•  Its transformative capability is derived from an integrative systems-
of-systems approach, by formulating a bi-level optimization 
framework to concurrently optimize the daily temperature setpoints 
and dispatch strategy of the storage system. 

•  It uses B-splines modeling (tuned by hourly temperature control 
points) to maximize the flexibility of the algorithm in representing 
different arbitrary trajectories in the real-time setpoint temperature. 
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S.T.  Battery Storage System Requirements 

OPTIMAL 
CAPACITY 

5. Real-time control optimization algorithm based on battery storage

5.1. Predictive DR optimization

Algorithm 1: Predictive DSM optimizarion

for d = 1 to D do
Result: X∗

TEMP,
Initialize: dX∗

TEMP = XTEMP based on ASHRAE Standard-55
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6. Results and Discussion
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CASE STUDY 
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•  Office Prototype in NYC: 
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•  Optimal sizing of battery storage - Passive DSM optimization (using 2012 
weather data): 
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Particle Swarm Optimization
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Max No. of Iteration=15

•  Real-time DSM Optimization using Predictive DSM (on 2014 weather data): 

Ø No DSM Action : 

Ø Predictive DSM Optimization: 

•  The Passive DSM Optimzation conducts the size (or capacity) optimization of the 
battery storage system 

•  The Predictive DSM Optimization performs one-day-ahead electricity cost minimization 
to find the optimal dispatch strategy and the optimal setpoint temperature profile 

Ø Predictive DR optimization in a 
peak week of Jun: 

Ø Breakdown of demand cost in 
summer months: 

Ø Breakdown of total annual cost: 

Ø Peak load reduction in summer months via Predictive DSM optimization: 

Predictive DSM Optimization Algorithm   

Demand Cost 

Energy Cost 

Loss of Comfort 

Ø  Electricity Cost: 

- Energy Cost: 

- Demand Cost: 

Grid load without bat. 

Grid load with bat. Optimal  
Capacity 

Equipment cost 

Optimal  
Demand limit(s) 

Time interval 
(e.g., 15-min) 

# of stages in 
billing period  

Energy rate ($/kwh) 
Demand rate ($/kw) 

Time period (e.g., on-peak) 

Optimal capacity (estimated on Passive DSM Opt.) 

Hourly temperature control points  
used to train the setpoint temperature profile: 

# of day in billing period 

Optimal hourly temperature control points in d-th day 

Daily demand limit(s) 
0.05 <SoC < 0.95 
Rate of charge/discharge = 1C 

Estimated using modified version of  
Predictive Percentage of Dissatisfaction model 

Ø  Lower level Optimization: 

Ø  Daily ToU Tariff 

P = PEC + PDC

PDC
=

MX

m=1

max

k⇢Tm
{rmd ⇥Gk}; k 2 Z>0, and Nd�1  k  Nd

PEC =
NdX

k=Nd�1

re,kGk�t

setpoint  
temperature profile 


